rellecliz

SECURE
VIBE
CODING

The

Complete
New Guide

Executive
Ssummary

Vibe coding marks a revolutionary leap in software development, enabling
rapid code generation through natural language prompts. This paradigm shift
dramatically accelerates prototyping, democratizes software creation for both
developers and non-technical users, and allows a sharper focus on creative
problem-solving over intricate syntax. Early adoption rates are significant:

Developer productivity is increasing
overall by up to

of Y Combinator startups leveraging
Al for core codebase development by
202512]
[24]

However, the speed and accessibility of Al-generated code come with a caveat:
it often lacks built-in security. Large Language Models (LLMs) are trained

for completion, not protection, and can introduce subtle, high-impact
vulnerabilities. A deeper analysis of these risks is provided in Section 4.

This guide serves as an essential resource for navigating the complexities of
vibe coding, emphasizing that its transformative potential can only be realized
responsibly through a robust "human-in-the-loop" methodology. It outlines the
imperative for:

Secure Prompt Engineering:
Crafting explicit and security-aware prompts to guide AI models towards
generating safer code from inception.

Integrated Security Workflows:

Implementing continuous security validation pipelines, comprehensive
human code reviews, and advanced automated testing (SAST, DAST, SCA)
throughout the development lifecycle.

Proactive Governance:

Establishing clear organizational policies, audit models, and continuous
monitoring to manage risks and ensure compliance with evolving
regulatory frameworks like the EU AI Act and NIST AI Risk Management
Framework.

By embracing these strategies, organizations can effectively mitigate the
inherent security risks, leverage vibe coding as a powerful augmentation to
traditional development, and foster a future where innovation is both rapid and
secure.

https://www.ycombinator.com/library/ME-vibe-coding-is-the-future
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

Table of 1. Introduction to Vibe Coding

Contents 1.1 Defining Vibe Coding: Natural Language to Code Generation
1.2 The Genesis and Core Philosophy
1.3 How Vibe Coding Works in Practice

2. The Evolving Scope and Applications of Vibe Coding
2.1 Key Advantages and Use Cases
2.2 Current Limitations and Challenges
2.3 Tool-Specific Analysis: Al Coding Systems Comparison
2.3.1 Comparative Analysis of Leading Vibe Coding Al Systems
2.3.2 Tool-Specific Security Behavior Analysis
2.3.3 Tool-Specific Secure Prompting Strategies

3. Vibe Coding Trends and Future Trajectories
3.1 Current Adoption and Industry Impact
3.2 Redefining Developer Roles
3.3 The Future of Human-Al Co-Agency in Software Development

4. Understanding Security Vulnerabilities in Vibe Coding
4.1 Why Al-Generated Code Isn't Inherently Secure
4.2 Common Security Flaws and Attack Vectors

5. Emerging Standards and Governance for AI-Generated Code
5.1 Regulatory Landscape and Compliance Considerations
5.1.1 Evolving Regulatory Frameworks
5.1.2 Industry-Specific Compliance Considerations
5.2 Emerging Standards and Certification Approaches
5.2.1 Al Code Generation Standards Development
5.2.2 Voluntary Certification Programs
5.3 Governance Models for Vibe Coding Implementation
5.3.1 Organizational Governance Structures
5.3.2 Audit and Assurance Models

6. Crafting Prompts for Secure Vibe Coding
6.1 Identifying Insecure Prompting Patterns
6.2 Strategies for Secure Prompt Engineering

7. Best Practices for Secure Vibe Coding Implementation
7.1 Implementation Workflow
7.2 Technical Implementation Standards
7.3 Organizational Implementation
7.4 Addressing Ethical and Legal Considerations

8. Conclusion and Recommendations

8.1 Key Recommendations for Organizations

8.2 Key Recommendations for Developers

8.3 Strategies for Addressing the Accessibility-Security Paradox
8.3.1 Tiered Development Models
8.3.2 Technological Solutions
8.3.3 Organizational Implementation
8.3.4 Progressive Risk Management Framework

E N

O OV 00 NOYOoO &

1
11
12
12

13
13
14

18
18
18
19
19
19
19
20
20
20

20
20
21

23
23
24
24
24

28
28
28
29
29
29
30
30

1. Introduction to Vibe Coding

1.1 Defining Vibe Coding:
Natural Language to
Code Generation

1.2 The Genesis and Core
Philosophy

1.3 How Vibe Coding
Works in Practice

Vibe coding is an emerging and revolutionary approach to software
development where users communicate their desired application functionality
to Al tools using natural language, rather than engaging in manual code writing.
The Al then assumes responsibility for the technical implementation, translating
plain speech into executable code. This methodology fundamentally redefines
programming as an "intent-based outcome specification," where the user
articulates the desired end result, and the Al determines the precise technical
steps to achieve it.

This approach marks a significant departure from traditional, manual coding
paradigms, ushering in a more flexible and Al-powered development process.
The emphasis shifts from meticulous syntax and intricate technical details

to articulating the "vibe" or essence of the desired outcome, allowing for a
more intuitive and creative development experience. The process is inherently
iterative; users provide feedback to the Al on the generated code, describing
issues or requesting changes until the desired functionality is achieved. This
conversational, back-and-forth interaction is a central characteristic of vibe
coding.

This shift means the democratization of software creation. The fundamental
move from syntax-driven coding to natural language interaction inherently
lowers the barrier to entry for software development. This is not merely about
enhancing efficiency for existing coders; it is about empowering a much
broader audience, including non-programmers, domain experts, entrepreneurs,
and designers, to create functional applications. The ability to describe an
application's behavior in plain language, rather than writing lines of code,
removes many traditional technical barriers. This means that individuals who
possess deep knowledge in a specific domain but lack coding proficiency

can now directly contribute to digital solutions, addressing their personal or
organizational needs. This broadening of participation is evident in various
sectors, including government, where employees can create custom applications
without extensive IT expertise, and in education, where students can focus

on creative exploration rather than being bogged down by complex coding
requirements. This expansion of access suggests a future where ideation is no
longer confined to technical teams, leading to a potentially more diverse and
innovative array of applications.

The term "vibe coding" was coined by Andrej Karpathy, co-founder of OpenAl, in
February 2025, describing it as "giving in to the vibes, embrace exponentials, and
forget that the code even exists."[1]

This philosophy prioritizes rapid experimentation over structural perfection,
with Al agents functioning as real-time coding assistants that automate tedious
processes. The approach shifts developer focus from syntax minutiae to higher-
level intent and creative problem-solving.

However, the core tenet of "forget that the code even exists" creates significant
security challenges. When users are encouraged to abstract away from code
mechanics, they inherently bypass critical understanding of how and why the
code functions. This abstraction gap makes it difficult to identify vulnerabilities,
maintain complex systems, or critically evaluate Al-generated output—
establishing a direct link between vibe coding's accessibility philosophy and its
security risks.

Vibe coding is characterized by a conversational, back-and-forth interaction with
Al agents. Users describe their requirements, the Al generates corresponding
code, and users then provide feedback on errors or desired changes, initiating
an iterative refinement loop.

https://x.com/karpathy/status/1886192184808149383

The practical application of vibe coding typically follows a structured, step-by-

step process:

4. Review and
Refine

1. Identify 2. Write Clear 3. Al Generates
Problem or Goal Prompt Code

©, O O

Every vibe Users articulate Large Language

coding session
commences with
aclear need or a
defined idea for a

software solution.

their intention
using natural
language
prompts. The
effectiveness of
the AI's output is
highly dependent
on the clarity,
specificity, and
contextual
richness of these
prompts.

Models (LLMs)
interpret the
natural language
prompts and
subsequently
produce
functional code
based on the
instructions
provided.

O

Users review
the generated
output, test its
functionality,
and then iterate
by providing
further prompts
to address any
issues, refine
existing features,
or add new
functionalities.

The tools utilized in vibe coding are predominantly large language models
(LLMSs) such as ChatGPT, Claude, OpenAlI's Codex, GPT-4, and DeepSeek, which
are capable of conversational code generation and structured code tasks.
Additionally, integrated Al coding assistants like GitHub Copilot, Cursor Al,
and Amazon CodeWhisperer play a crucial role, often functioning as "pair
programmers" that offer real-time suggestions, fix bugs, and enhance code

structure.

A significant implication of vibe coding is the evolving definition of a
"programming language." This approach suggests that natural human
language, such as English, is becoming a de facto programming language,
abstracting away the need for traditional, formal syntax. This concept carries
profound implications for how future developers are trained and how software
is conceptualized. If natural language is sufficient to generate functional
code, then the conventional understanding of a programming language - a
formal, artificial language designed to communicate precise instructions to a
machine - is being fundamentally challenged. The interface to computation
is shifting from rigid, formal syntax to the more fluid and semantic nuances
of human expression. This suggests a future where "coding" may involve less
memorization of specific syntax rules and more precise articulation of intent,
potentially leading to a convergence of roles traditionally separated, such

as product management, design, and development. It also raises complex
questions about the robustness and expressiveness of natural language as a
programming interface for highly complex and mission-critical systems.

2. The Evolving Scope and Applications of Vibe Coding

2.1 Key Advantages and

Use Cases

2.2 Current Limitations

and Challenges

Vibe coding offers compelling advantages that are reshaping software

development:

Speed and Accessibility

v ©

Rapid Democratized
Prototyping Development
Build MVPs in Empowers non-
hours rather programmers,
than weeks, domain

enabling fast
idea validation
and iterative

experts, and
entrepreneurs to
create functional

development applications
cycles by describing
desired

‘.ll

Productivity
Gains

Up to 55% faster
completion times
by automating
repetitive tasks
like boilerplate
code, basic data
operations, and
standard patterns
[24]

functionality in
plain language

Enhanced Focus and Innovation

&z P

Creative Experimentation
Problem-Solving

Frees developers Ideal for side
from syntax projects, concept

details to focus validation,
on architecture, and rapid
user experience, iteration without

and complex significant time
challenges investment

Practical Applications

Vibe coding excels in building internal tools, automation scripts, simple web
applications, chatbots, and lightweight integrations. It's particularly valuable for
government process automation, educational projects, and helping experienced
developers learn new frameworks through scaffolding and sample generation.

Strategic Positioning

Most teams adopt a hybrid approach—using vibe coding for rapid prototyping
and repetitive tasks while maintaining traditional coding for complex, mission-
critical systems. This suggests vibe coding functions best as augmentation rather
than replacement, requiring new strategies for integrating Al-generated code
into existing CI/CD pipelines and development workflows.

Despite its numerous benefits, vibe coding is not without its limitations and
challenges:

Technical Complexity: While vibe coding can handle basic standard
frameworks, it often becomes challenging for real-world applications with novel
or complex technical requirements. The AI may generate basic or incomplete
code for highly specific or intricate functionalities.

https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

Code Quality and Performance Issues: Al-generated code frequently requires
optimization and refinement to maintain high quality. It can be inefficient,
difficult to comprehend, or stylistically inconsistent. It is generally not an ideal
choice for distributed applications, which demand structured architecture and
sophisticated optimization strategies.

Debugging Challenges: Code generated by Al can be challenging to debug due
to its dynamic nature, lack of architectural structure, opaque underlying logic,
and absence of clear documentation or intent. Errors can compound rapidly if
not addressed and fixed early in the development process.

Maintainability and Long-Term Reliability: The speed and convenience
offered by vibe coding often come at the cost of flexibility and long-term
maintainability, particularly for complex or large-scale projects where fine-
grained control over every system component is essential.

Over-reliance on AI / Knowledge Gaps: There is a notable potential for users
to become overly dependent on Al tools, which can hinder the development of
their own fundamental coding skills and lead to knowledge gaps regarding the
underlying "why" of the code. If issues arise, users may struggle to resolve them
due to a lack of foundational understanding of how the code operates. This can
become a critical issue in professional settings where a deep understanding of
the system is paramount for long-term success.

Prompt Dead-Ends: Developers may encounter situations where the Al fails to
adequately understand or fulfill complex or nuanced requests. In such cases,
users must often reframe their prompts, break down the problem into smaller,
more manageable parts, or even switch to different tools.

The rapid generation of code through vibe coding, coupled with potential issues
in quality, consistency, and a lack of clear logic or documentation, creates a
significant risk of accumulating "hidden technical debt". This debt may not be
immediately apparent during initial development but can lead to increased
maintenance load, longer debugging times, and scalability issues as projects
evolve. The speed of generation can inadvertently mask underlying structural
and quality issues. Without proper human review and refinement, these issues
can compound over time, creating a burden that will eventually slow down
development or lead to system failures, much like traditional technical debt but
potentially harder to identify due to the opaque nature of Al-generated code.
Organizations must therefore factor in the ongoing cost of "refactoring and
maintaining Al-generated code" and invest in tools and processes that help
visualize, document, and manage this new form of technical debt, rather than
solely prioritizing initial generation speed.

2.3 Tool-Specific Analysis:

2.3.1 Comparative Analysis
of Leading Vibe Coding Al
Systems

Al
System

)

OpenAl Codex / GPT-4

Key Strengths:
Versatile, strong conceptual
understanding

x*

Claude

Key Strengths:
Strong explanations,
natural language focus

w4

DeepSeek Coder

Key Strengths:
Specialized for coding
tasks; Deep knowledge of
repositories

S

GitHub Copilot

Key Strengths:
IDE integration; Repository
context awareness

&

Amazon CodeWhisperer

Key Strengths:

AWS service integration;
Policy-compliant code
generation

AI Coding Systems Comparison

This section will provide a detailed comparison of major Al coding systems,
analyzing their specific security features, limitations, and best use cases.

Comparative Analysis of Leading Vibe Coding AI Systems:

Security
Features

Code vulnerability
detection in
Copilot; Context
window allows
for architectural
understanding

Risk-aware
prompting
capabilities;
Strong
documentation
generation

Repository-aware
code suggestions;
Built-in linting
capabilities

Real-time security
scanning; OWASP
vulnerability
detection

Security
scan feature;
Compliance
detection

Notable
Limitations

May suggest
deprecated
libraries;
Occasional
hallucination
of non-existent
functions

Less specialized
for certain
programming
domains;
Newer to code
generation

More limited
general
knowledge
outside coding
domain

Over-reliance

on context;
Suggestions
based on patterns
not security

AWS-centric
solutions;
Less effective
for non-AWS
environments

Optimal
Use Cases

Full-stack web
development;
Complex
algorithmic
challenges

Documentation-
heavy projects;
Security-critical
applications
where
explanations
matter

Performance-
critical
applications;
System-level
programming

Rapid prototyping
within existing
codebases;
Augmenting
developer
workflow

Cloud
infrastructure
code; Compliant
environments

Security
Considerations

Tendency to
generate verbose
code that may
obscure security
issues; Strong at
syntax but weaker
at system-level
security

Excels at
explaining
security
implications;
Conservative
approach

to security
recommendations

Strong static
analysis
integration;
Weaker at
detecting logical
security flaws

Rapid prototyping
within existing
codebases;
Augmenting
developer
workflow

Strong in
generating
compliant code;
Service-specific
security features

Y

Cursor Al

Key Strengths:

Focused on natural
language editing of existing
code; Context-aware
refactoring

BASE44

Key Strengths:

Complete no-code
application builder;
Conversational Al interface;
Integrated deployment and
hosting

2.3.2 Tool-Specific Security
Behavior Analysis

Integrated
security linting
and vulnerability
highlighting
within the editor

Built-in
authentication
and authorization;
Secure
infrastructure
with one-click
deployment;
Integration
security with
trusted services
(AWS S3, GitHub,
Supabase)

Relies heavily

on existing
codebase context;
Less suited

for generating
entirely new, large
codebases from
scratch

No direct code
access or
customization;
Limited to
platform
capabilities;
Dependency on
platform vendor

Iterative code
refinement;
Security auditing
of existing
projects;
Collaborative
secure
development

Rapid MVP
development;
Non-technical
users building
full-stack

apps; Business
automation tools;
Custom internal
applications

Can identify and
suggest fixes for
vulnerabilities

in existing code;
Effectiveness tied
to the quality

of the provided
context; Good
for human-in-
the-loop security
review

Platform-
managed security
reduces individual
responsibility but
creates vendor
dependency;
Limited visibility
into underlying
security
implementations;
Requires trust

in platform's
security practices

Each AI system exhibits distinctive patterns when handling security-critical code

generation:

GPT-4/Codex

Tends to prioritize completeness and elegance over security when not
explicitly prompted. Requires specific security directives but offers the most
comprehensive code generation capabilities. Security vulnerabilities often
appear in edge cases handling.

Claude

More cautious with potentially risky operations. Often includes explanatory
comments about security implications and tends to suggest conservative
approaches. Provides more verbose documentation of security considerations
but may generate less optimized code.

GitHub Copilot

Leverages GitHub's security datasets to flag common vulnerability patterns.
Particularly strong at identifying issues present in public repositories but may
struggle with novel security patterns. Benefits significantly from IDE-integrated

security scanning.

Amazon CodeWhisperer
Optimized for secure AWS service integration. Includes built-in detectors for

security and compliance issues related to AWS services. Security strengths are
significantly AWS-centric.

DeepSeek Coder

Emphasizes performance and algorithmic correctness. Security approach
focuses on static analysis rather than architectural security patterns. Strong at
identifying syntax-level vulnerabilities but weaker at system-level security design.

2.3.3 Tool-Specific Secure
Prompting Strategies

10

Cursor Al

Excels at identifying and suggesting improvements for security vulnerabilities
within existing code by leveraging its deep contextual understanding of the
codebase. It often highlights potential security issues as part of its editing and
refactoring suggestions, enabling developers to address them proactively.

BASE44

Takes a fundamentally different approach by abstracting security
implementation entirely away from users. Security is managed at the platform
level through built-in authentication, authorization, and secure infrastructure
rather than through code-level controls. Users rely on the platform's security
implementations and trusted third-party integrations (AWS S3, Supabase,
GitHub) rather than implementing custom security measures. This approach
eliminates many common coding vulnerabilities but creates dependency on the
platform vendor's security practices and limits visibility into underlying security
implementations. Security risks shift from code-level vulnerabilities to platform
trust, configuration management, and vendor security posture.

Different Al systems respond optimally to different prompting patterns:

For GPT-4/Codex:

"Generate [functionality] with explicit
OWASP Top 10 protections. Include
robust input validation for [specific
attack vectors]. Follow zero-trust
principles and explain your security
reasoning.”

For GitHub Copilot:

"// Security-critical function

// Requirements: Must validate all
inputs, use parameterized queries, and

implement proper error handling

// Potential threats: SQL injection, XSS,
IDOR

function...”

For DeepSeek Coder:

"/* Performance-critical and security-
sensitive function

* Constraints: No dynamic memory
allocation, bounds checking required

* Security: All inputs must be validated,
no buffer overflows
*/

Void..."

For Claude:

"Please create [functionality] that
prioritizes security over convenience.
Implement defense-in-depth patterns
including [specific security controls].
After generating the code, identify any
potential security weaknesses that
remain.”

For Amazon CodeWhisperer:
"# Secure AWS Lambda function

Must comply with: least privilege,
encryption in transit/at rest

Handle sensitive data according to
compliance requirements
def..."

For Cursor AI:

"// Analyze the following code for
potential security vulnerabilities, focusing
on [specific attack vectors like SQL
injection or XSS]. Suggest refactorings to
improve security, adhering to [Security
standard like OWASP Top 10]."

For BASE44:

"Build a [application type] that handles
[sensitive data type]. Requirements:
Implement multi-factor authentication
for all users, role-based access control
with [specific role definitions], data
encryption at rest, audit logging for all
user actions, and GDPR-compliant data
handling. Ensure the application follows
principle of least privilege and includes
session management with automatic
timeout. Integrate with [specific secure
services] and configure secure backup
procedures."

3. Vibe Coding Trends and Future Trajectories

3.1 Current Adoption and Vibe coding has experienced rapid adoption since its emergence in early 2025.
Key metrics demonstrate significant industry impact:

Industry Impact

I

of Y Combinator startups are building
core codebases with Al assistance [2]

Up to

44.,

of developers had integrated Al
coding tools into workflows by 2023
[23]

faster completion times reported
across projects using vibe coding [24]

This acceleration enables startups to validate concepts in hours rather than
weeks, dramatically shortening time-to-market. Notable successes include Pieter
Levels' flight simulator game, which grossed $1 million in under 20 days using

largely Al-generated code.

Beyond efficiency gains, vibe coding is democratizing software creation

by expanding access to non-technical domain experts, entrepreneurs, and
designers. This shift represents a fundamental acceleration in innovation
cycles—Karpathy's "embrace exponentials" philosophy combined with rapid
prototyping capabilities suggests we're entering an era of unprecedented
application proliferation and faster market disruption.

https://www.ycombinator.com/library/ME-vibe-coding-is-the-future
https://survey.stackoverflow.co/2023/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

3.2 Redefining Developer
Roles

3.3 The Future of Human-
AI Co-Agency

Vibe coding is fundamentally reshaping developer responsibilities, shifting
focus from manual code crafting to guiding, testing, and refining Al output.
Developers are becoming "conductors, guiding an orchestra of Al tools."

Emerging Core Skills:

Prompt Critical
Engineering: Evaluation:
Articulating Assessing and
requirements integrating Al-
precisely to generated output
yield effective Al

responses

System
Architecture:
Focusing on
higher-level
design while

AI handles
implementation
details

This evolution suggests the rise of a "product engineer" archetype—blending
software engineering with product management skills. These professionals

must understand both user needs and technical implementation, translating
product vision into precise Al prompts while critically evaluating outputs. The
core competency shifts from writing efficient code to effectively orchestrating Al
capabilities and ensuring quality outcomes.

Vibe coding marks the beginning of human-AI co-agency, where humans and
intelligent systems collaborate to achieve outcomes neither could accomplish
alone. This future emphasizes intuitive, human-centered development with Al
adapting to human expression rather than forcing conformity to machine logic.

Key Developments:

Evolution of Voice-to-Code

Development Interfaces:
Environments: Developers can
Tools like Cursor literally speak
Al enable solutions into

seamless natural existence
language-to-code

workflows

Success Strategies for Professionals:

) %

Cultivate clear
communication
and prompting
skills

Balance AI

productivity gains
with foundational
coding knowledge

Adaptive

AI Systems:
Technology
increasingly
conforms to
human modes of
expression

\g Q
< 2y

Actively explore
the expanding

Prioritize ethical
considerations

Al development and quality
ecosystem control in
Al-assisted

development

This continuous adaptation and learning will be crucial for navigating the
evolving landscape of human-Al collaboration in software development.

4. Understanding Security Vulnerabilities in Vibe Coding

4.

1 Why AI-Generated

Code Isn't Inherently
Secure

Security Reality Check

won't include protections
unless explicitly requested.

decision: include security

Al treats security like
an optional feature—it

Think of it as "security
by invitation only." Every
prompt is a security

requirements or accept
insecure defaults.

Despite being functionally correct, Al-generated code often omits essential
security safeguards. This is not due to malice or error — it stems from the core
design of LLMs and certain prompting patterns:

LLM Limitations and Pattern Completion Over Intent: LLMs primarily
function by predicting the next most probable token in a sequence,

rather than applying deep security engineering principles. They prioritize
fulfilling functional requirements over security considerations and often
lack the contextual understanding of an application's specific security
requirements or an organization's established best practices. This means
that Al can generate code that appears functional but omits critical
security measures simply because they were not explicitly requested in
the prompt.

Lack of Architectural Awareness: Current LLMs typically generate code
at the function or module level without a comprehensive understanding of
system-level architectural constraints, such as session state, inter-service
interactions, or permission enforcement. This can lead to the introduction
of vulnerabilities like broken access controls, missing state checks, or

logic flaws that only become apparent when the code is integrated into a
broader system.

Training Data Flaws: Al models are trained on vast datasets of existing
code, which may unfortunately include inherent flaws, outdated security
practices, or even biased human-created code. This means that the Al can
perpetuate or inadvertently introduce known vulnerabilities present in its
training data. Research indicates that LLM-generated code is "inherently
insecure.”A Stanford University study suggested that 36% of participants
with access to Al assistants wrote solutions vulnerable to SQL injection
compared to 7% of the control group [22].

Rapid Deployment vs. Security Review Capacity: The speed at which
Al can generate code often outpaces the capacity of human security
teams to review it thoroughly. This can lead to vulnerable code being
pushed into production environments without adequate scrutiny.

Insecure Prompting Patterns: As further discussed in Section 6.1, the
quality and security of Al-generated code are profoundly influenced by
the prompts provided by the user. Vague instructions, the omission of
explicit security requirements, implicit trust in Al outputs without human
validation, and a sole focus on speed over quality significantly increase the
likelihood of introducing vulnerabilities. The Al's default behavior, unless
otherwise nudged, is to prioritize functional completion over security.

The fact that Al prioritizes functional correctness over security and often lacks
architectural awareness means it can generate code that appears to work
perfectly but contains subtle, deeply embedded vulnerabilities. These can be
termed "silent killer" vulnerabilities because they are difficult to detect through
basic functional testing and can often bypass traditional Static Application
Security Testing (SAST) tools, potentially surviving CI/CD pipelines and reaching
production. The deceptive nature of these flaws, where the code functions as
requested despite its underlying insecurity, creates a false sense of security,
making them particularly insidious and challenging to identify until exploited.
This necessitates a shift from reactive security (fixing obvious bugs) to proactive,
threat-modeling-driven security reviews and advanced testing specifically
designed to uncover these subtle, logic-based vulnerabilities that AI might
introduce. This also underscores the irreplaceable role of human security
expertise in the Al-driven development landscape.

https://arxiv.org/abs/2211.03622

4.2 Common Security
Flaws and Attack Vectors

Case Study

Al-generated code can introduce a range of common security flaws and attack
vectors, often due to the AI's focus on functionality over security or its lack of

contextual understanding. These include:

Data Security Vulnerabilities:

Hardcoded Credentials and Exposed
Secrets: Al tools frequently suggest
embedding sensitive information

such as API keys, secrets, or database
passwords directly within the source
code. This makes credentials visible to
anyone with access to the codebase
and risks their persistence in version
control history. The GitGuardian's
State of Secrets Sprawl Report 2025
indicated that nearly 24 million secrets
were inadvertently exposed on GitHub
in one year, with repositories using Al
coding tools showing a 40% higher
rate of secret exposure [3].

Sensitive Information Exposure:
Debug or error messages generated
by Al might inadvertently reveal
internal system details or sensitive
information.

The Exposed API Key

DataHub Connect's junior developer Alex used Al to generate code for fetching
stock market data. Using the prompt "Generate Python code to fetch stock prices
from 'MarketData API' for given symbols," the Al produced:

Python

import requests

def get_stock_price(symbol):

api_key = "YOUR_HARDCODED_API_KEY_12345" # Al inserted this for
immediate functionality
url = f"https://api.marketdata.com/v1/quotes/{symbol}?apiKey={api_
key}"

response = requests.get(url)
return response.json()

Alex, unaware of the security implications, pushed this code to their private

repository.

The Impact:

API Abuse Operational
Risk: Disruption:

Exposed keys
could enable
unauthorized
calls, incurring
overage charges
or depleting
quotas

Key rotation
would require
downtime for the
internal tool

Reputational
Damage:
Security incidents
erode client trust

https://blog.gitguardian.com/secrets-leaked-outside-the-codebase/

Key Lessons:

1. Mandatory Security Review: Even simple Al-generated code needs

human security validation

2. Secure Prompting: Include explicit security directives: "Generate
Python code to fetch stock prices. Ensure API keys are loaded from
environment variables, not hardcoded."

3. Automated Detection: Implement tools like GitGuardian to scan for
exposed credentials before deployment

This example illustrates the "security by omission" problem—AI omits security
measures unless explicitly instructed, making human oversight essential.

Unsafe Data Handling and Injection Attacks:

Missing Input Validation:
Al-generated code often lacks proper
input validation, which is crucial for
preventing various injection attacks.

Cross-Site Scripting (XSS):

Al tools may reflect user input unsafely
in web pages, enabling attackers to
inject malicious scripts that can expose
sensitive data or compromise user
sessions.

Command Injection:

Improper handling of system
commands in Al-generated code can
allow attackers to execute arbitrary
commands on the server.

Weak Security Controls:

Insufficient Error Handling:

Poorly implemented error handling
can inadvertently leak sensitive system
information to attackers.

Outdated Cryptographic Methods:
The AI might suggest or implement
weak or deprecated cryptographic
algorithms (e.g., MD5, SHA1, DES),
compromising data security.

SQL Injection:

Direct insertion of unsanitized user
input into database queries can allow
attackers to manipulate or steal

data from the database. A Stanford
University study suggests that
approximately 36% of Al-generated
database queries are vulnerable to
SQL injection].

Path Traversal:

This vulnerability arises when file paths
are constructed from unchecked user
input, potentially allowing attackers

to access or manipulate arbitrary files
outside the intended directory.

Missing or Weak Authentication
and Authorization:

Al-generated code may omit critical
authentication and authorization
checks, leading to unauthorized access
to sensitive data or functionality, or
allowing attackers to bypass business
logic.

Timing-Based Side-Channel Attacks:
Subtle vulnerabilities, such as using
non-constant-time comparisons for
cryptographic operations (e.g., ==

for HMAC comparison), can enable
attackers to gradually brute-force
secrets by observing response times.

Common Vibe Coding
Security Vulnerabilities
and Examples

16

Configuration Issues:

Al-generated code might include development features enabled in production
environments, overly permissive Cross-Origin Resource Sharing (CORS) settings,
or unnecessary services enabled by default, creating potential attack vectors.

Prompt Injection:

This is a newer class of attack specific to LLMs, where attackers manipulate
language model instructions to bypass security defenses or extract sensitive
information, sometimes by "jailbreaking" the LLM to behave outside its intended
parameters. This can also lead to "Prompt Leak," where the LLM inadvertently
reveals its internal system instructions or proprietary logic, or "Denial of Wallet"
attacks, where excessive engagement with the LLM leads to substantial resource

consumption and financial implications.

Supply Chain Vulnerabilities:

Al tools may automatically add unvetted or vulnerable third-party libraries and
packages, introducing supply chain risks into the codebase.

Data Poisoning Attacks:

Malicious actors could manipulate the training data used for Al models by
injecting malicious samples, potentially creating backdoors or vulnerabilities in

the generated code.

Feedback Loops:

Insecure Al-generated code, if used as training data for newer Al models, can
create a feedback loop that perpetuates and even spreads vulnerabilities across

future code generations.

Vulnerability Specific

Category Vulnerability

Data Security Hardcoded
Credentials

Sensitive Info
Exposure

Unsafe Data
Handling

Missing Input
Validation

SQL Injection

Description

Embedding
sensitive data (API
keys, passwords,
tokens) directly in
source code.

Debug or error
messages
revealing internal
system details.

Failure to validate
or sanitize user
input before
processing.

Direct insertion

of user input

into SQL queries
without proper
sanitization,
allowing malicious
commands.

Illustrative
Example

password:
'‘admini23'in

a database
connection string.

An error message
displaying

full database
connection details.

Accepting any
file type in an
upload, leading
to executable file
uploads.

SELECT * FROM
users WHERE name
='admin'; DROP
TABLE users; --'

17

Weak Security
Controls

Configuration
Issues

Cross-Site
Scripting (XSS)

Path Traversal

Command
Injection

Broken Access
Control

Insufficient Error
Handling

Weak
Cryptography

Timing Side-
Channel Attacks

Insecure Defaults

Reflecting
unsanitized user
input in web
pages, allowing
malicious scripts
to execute in
users' browsers.

Constructing

file paths from
unchecked user
input, allowing
access to arbitrary
files.

Improper
handling

of system
commands,
allowing
attackers to
execute arbitrary
commands.

Missing or
inadequate
checks to restrict
user access to
sensitive data or
functionality.

Error messages
revealing
sensitive system
information.

Use of outdated
or insecure
cryptographic
algorithms/
practices.

Using non-
constant-time
comparisons

for sensitive
data, allowing
attackers to infer
information

by measuring
response times.

Development
features enabled
in production,
overly permissive
settings.

Displaying
user-submitted
<script>alert('XSS");
</script> directly.

fs.readFile(file.
originalname)
where file.
originalname is
.J./.Jetc/passwd.

Al generating code
that executes user
input directly as a

shell command.

An API endpoint
allowing any
user to download
any document

by guessing its
filename.

A generic server
error message
showing stack
traces or internal
paths.

Using MD5 for
password hashing
or reusing
Initialization
Vectors (IVs).

if (signature ==
expected) for
HMAC verification.

Overly permissive
CORS settings

or debug mode
enabled in
production.

AI-Specific
Vulnerabilities

Prompt Injection

Supply Chain
Risks

Data Poisoning

Manipulating
LLM instructions
to bypass
defenses or
extract sensitive
information.

Al adding
unvetted or
vulnerable third-
party libraries.

Malicious
manipulation
of Al training
data to inject
vulnerabilities.

A user prompt
designed to make
the Al reveal its
internal system
prompt.

Al suggesting a
dependency with
known CVEs.

Training data
containing
intentionally
flawed code
patterns.

5. Emerging Standards and Governance for AI-Generated Code

5.1 Regulatory Landscape

and Compliance
Considerations

5.1.1 Evolving Regulatory

Frameworks

18

The AI Act in the European Union has introduced significant compliance
requirements for Al systems, with potential implications for vibe coding
tools classified as high-risk AI systems, particularly when deployed in critical
infrastructure, healthcare, or financial services [4].

Organizations must consider:

Risk
Classification:
Determining
whether their
vibe coding
implementations
fall under high-
risk categories
requiring
conformity
assessments

Transparency
Requirements:
Documenting Al
involvement in
code generation,
especially for
systems that
impact human
safety or rights

Documentation

Burden:
Maintaining
records of
prompts,
generated code,
human review
processes,

and validation
procedures

In the United States, the National Institute of Standards and Technology (NIST) Al
Risk Management Framework provides voluntary guidelines that organizations
can adopt. The NIST framework emphasizes [51:

£o)

Governance:
Establishing clear
oversight of Al
systems

O

Mapping:
Identifying and
documenting
contexts where
Al-generated
code is used

£

Measurement:
Quantifying the
performance

and risks of vibe
coding practices

080

Management:
Implementing
controls to
address identified
risks

https://eur-lex.europa.eu/eli/reg/2024/1689/oj

5.1.2 Industry-

Specific Compliance

Considerations

Industry Relevant Vibe Coding Compliance
Regulations Requirements
Healthcare HIPAA [6], FDA Validation and verification

Financial Services

Software as
Medical Device [7]

Basel Committee

documentation; Deterministic behavior
proof; Human oversight evidence

Explicit risk management for Al-

on Banking generated code; Auditability of code
Supervision Al generation process
guidelines [8]
Critical NIST Supply chain risk management for
Infrastructure Cybersecurity Al-generated components; Increased
Framework [9] security testing requirements
Government FedRAMP [10], Documentation of Al involvement;
CMMC[11] Enhanced review procedures for Al-

generated code

5.2 Emerging Standards
and Certification
Approaches

5.2.1 Al Code Generation
Standards Development

Several standards organizations are developing frameworks specifically
addressing Al-generated code:

5.2.2 Voluntary

Certification Programs

19

ISO/IECTC 1/
SC421121is
developing
standards for
Al systems that
include specific
provisions for Al
code generation
systems,
focusing on
trustworthiness,
quality
assessment, and
bias detection.

IEEE P2864 (under
development)
aims to establish
standard metrics
for measuring
the reliability and
performance

of Al-assisted
software
development
tools.

OWASP Al Security and Privacy Guide
[13] has expanded to include specific
guidance on securing applications built
with Al-generated code, including:

+ Al-specific testing methodologies

+ Verification procedures for Al-
generated components

* Special considerations for prompt
injection attacks

Industry-led certification programs are emerging to validate secure vibe coding

practices:

Al Code Safety Certification (ACSC):
A proposed industry consortium

program requiring:

* Documentation of human review

processes

* Proof of security testing specific to

Al-generated code

+ Implementation of continuous
security monitoring

Secure Al
Development
Lifecycle (SAIDL):
A framework
adapting
traditional secure
development
lifecycle
practices to Al-
assisted coding
environments.

 https://www.iso.org/committee/6794475.html
https://owasp.org/www-project-ai-security-and-privacy-guide/
 https://www.fda.gov/medical-devices/digital-health-center-excellence
https://home.treasury.gov/system/files/136/Managing-AI-Specific-Cybersecurity-Risks-In-the-Financial-Services-Sector.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://www.fedramp.gov/assets/resources/templates/FedRAMP-SSP-A12-Security-Controls-Baseline-Template.xlsx
https://dodcio.defense.gov/CMMC/

5.3 Governance
Models for Vibe Coding
Implementation

5.3.1 Organizational
Governance Structures

5.3.2 Audit and Assurance
Models

Effective governance of vibe coding practices requires dedicated oversight roles

and clear accountability structures:

AI Code Ethics
Committee:
Cross-functional
team responsible
for establishing
organizational
policies, reviewing
high-risk
implementations,
and ensuring
compliance

with emerging
regulations.

Emerging best practices for assurance of Al-generated code include:

AI Code
Provenance
Tracking:
Maintaining
immutable
records linking
generated code to
specific prompts,
models, and
human reviewers.

AI Security
Architects:
Specialized role
focusing on the
intersection of
Al capabilities
and security
architecture,
responsible for
defining secure
prompt libraries
and validation
protocols.

Differential
Testing
Frameworks:
Comparing
outputs of
multiple AI
systems for
the same
functionality to
identify potential
security issues.

Prompt
Engineering
Governance:
Establishing
review processes
for prompts used
in production
code generation,
including
mandatory
security
requirements.

Security-
Focused Red
Teaming:
Dedicated
exercises
where security
professionals
attempt to
craft prompts
that generate
vulnerable code,
helping identify
weaknesses

in prompt
engineering
practices.

6. Crafting Prompts for Secure Vibe Coding

6.1 Identifying Insecure
Prompting Patterns

The quality and security of Al-generated code are profoundly influenced by

the prompts provided by the user. Building on the Al limitations outlined in
Section 4.1, specific prompting patterns significantly increase the likelihood

of introducing vulnerabilities because current AI models focus on functional
output unless specifically instructed to include security controls. This "pull-only"
model means developers must actively specify protections — security won't be
embedded by default.

Key insecure prompting patterns include:
Vague or Naive Instructions: Simply asking the Al to "generate code for
a specific application" without any explicit security requirements often leads

to insecure outputs. The Al's default behavior, unless otherwise nudged, is to
prioritize functional completion over security.

20

6.2 Strategies for Secure
Prompt Engineering

21

¢ Omission of Security Requirements: Failing to explicitly request crucial
security measures, such as proper input validation, robust authentication,
comprehensive authorization, or secure error handling, means these
critical components will likely be absent from the generated code. The
AI will focus on the requested functionality and may not proactively
implement best practices if they are not part of the explicit directive.

& Implicit Trust: A high-risk pattern involves developers who "prompt
an LLM, accept the output wholesale, and proceed without validation or
threat modeling." This implicit trust in the AI's output, without critical
human review, is a primary pathway for vulnerabilities to enter production
systems.

S

Speed-only Focus: Prioritizing rapid code generation without security
considerations in prompts introduces numerous vulnerabilities.

Security Reality Check: Prompting without security context is like
compiling without error handling, it works until it breaks. Unless you
explicitly guide the LLM to consider secure patterns, it will default to
functional, not defensive, code. Always assume security is opt-in,
not built-in.

To mitigate the "security by omission" problem, developers must adopt strategic
prompt engineering techniques:

Explicit Security Directives Always specify security requirements within prompts,
including input validation, parameterized queries, and access controls.

Example:

"Create a user authentication system using industry-standard secure practices. Store
passwords using Argon2 (141 hashing, implement multi-factor authentication, and ensure
secure session management with token expiration."

Multi-Stage Prompting Prompt the Al twice: first to implement the feature, then to
review its own output for security issues.

Example Sequence:

1. 2.
"Generate a Python Flask API endpoint "Review this Flask endpoint for security
for user profile updates.” vulnerabilities. Identify issues with

input validation, authentication, and
authorization. Suggest production-ready
improvements.”

Negative Constraints Explicitly prohibit insecure practices: "Never hardcode
secrets," "Avoid unsafe functions like exec or eval," or "Prohibit .env files in the
codebase."

Challenge Testing Proactively test Al responses with problematic inputs: "How
would this code handle a user input of: admin': DROP TABLE users; --?" or "What
happens if a file upload contains a .php executable?"

Request Security Explanations Ask the Al to identify potential vulnerabilities:
"What security risks exist in this code?" or "How can we improve error handling to
prevent information leakage?"

https://www.password-hashing.net/argon2-specs.pdf

Secure vs. Insecure
Prompting

22

Feature/Task

File Upload

Insecure Prompt
Example: "Build a
file upload server."

User
Authentication

Insecure Prompt
Example: "Create
a login form for my
app' n

Database
Connection

Insecure Prompt
Example:
"Connect to

my PostgreSQL
database."

API Endpoint

Insecure Prompt
Example: "Build
an API to download
documents."

Potential
Vulnerability

No file type
validation,
filename
sanitization, or
size limits; allows
malicious uploads
(RCE, Path
Traversal).

Weak password
storage (plain
text), no MFA,
insecure session
management.

Hardcoded
credentials
directly in the
code.

No user context,
authentication,
authorization,
or ownership
verification.

Secure Prompt
Example

"Build a file
upload server
using Express and
Multer. Ensure
rigorous file type
validation (only
JPEG, PNG, GIF),
sanitize filenames
to prevent path
traversal, and
implement a

max file size of
5MB. Store files
securely."

"Create a user
authentication
system for a

web app. Store
passwords

using strong,
salted hashes
(e.g., Argon2).
Implement
multi-factor
authentication
(MFA) and

secure session
management with
token expiration."

"Connect to

a PostgreSQL
database using
environment
variables for
credentials
(DB_USER, DB_
HOST, DB_NAME,
DB_PASSWORD,
DB _PORT). Use a
connection pool."

"Build an API
endpoint to allow
authenticated
users to download
their own uploaded
documents.
Implement robust
authentication
and authorization
checks to ensure
only the document
owner can access
it."

Security
Outcome

Prevents
malicious file
uploads, path
traversal,
and ensures
controlled
storage.

Stronger
password
security,
enhanced

user identity
verification, and
reduced session
hijacking risks.

Prevents
exposure of
sensitive database
credentials in
source code.

Enforces proper
access control
and prevents
unauthorized
data access.

Data Processing

Insecure Prompt
Example: "Process
user input for my
web form."

Error Handling

Insecure Prompt
Example: "Show
error messages if
something goes
wrong."

No input
sanitization,
vulnerable to XSS
or SQL injection.

Error messages
revealing internal
system details or
stack traces.

"Process user input
from the web form.
Validate all inputs
for correct format
and sanitize them
to prevent SQL
injection and
Cross-Site Scripting
(XSS) attacks. Use
parameterized
queries for
database
interactions."

"Implement robust
error handling that
provides user-
friendly messages
without exposing
sensitive internal
details or stack
traces. Log detailed
errors securely

on the server-side
only."

Mitigates
injection attacks
and ensures data
integrity.

Prevents
information
leakage that
attackers could
exploit.

7. Best Practices for Secure Vibe Coding Implementation

7.1 Implementation
Workflow

23

Code Review
Process

Automated
Security
Integration

Security Testing
Requirements

Security Reality
Check

Treat all AI-
generated code
as potentially
vulnerable

Integrate SAST/
DAST tools
(SonarQube, Snyk,
Veracode) into CI/
CD pipelines

Write security-
specific unit
tests verifying
unauthorized
access denial

Conduct peer
reviews focusing
on business logic
and edge cases

Implement
dependency
scanning
with OWASP
Dependency-
Check [15]

or GitHub
Dependabot

Include input
sanitization tests
for known attack
vectors

Refactor verbose
Al output for
clarity and
consistency with
project standards

Deploy secrets
detection tools
(GitGuardian) to
scan codebases
and Git history

Implement DAST
methods like fuzz
testing for critical
endpoints

Speed without oversight is just fast failure. Al can generate
a thousand lines of code in minutes, but it takes human
expertise to determine if those lines should exist in
production. The bottleneck isn't code generation—it's

security validation.

https://owasp.org/www-project-dependency-check/

7.2 Technical
Implementation
Standards

7.3 Organizational

Implementation

7.4 Addressing Ethical
and Legal Considerations

24

Data Handling

Access Control
Implementation

Governance
Structure

Compliance
and Legal
Framework

Continuous
Monitoring

Use environment
variables or
dedicated secret
management
tools (AWS Secrets
Manager [16],
HashiCorp Vault
[171)

Deploy robust
authentication
(OAuth 18],
MFA) and RBAC
authorization

Establish AI Code
Ethics Committee
for policy and
high-risk review

Document Al
tool usage

for regulatory
compliance (EU
Al Act [4], NIST
Framework [5])

Create
transparency
frameworks
linking code to
specific prompts
and reviewers

Deploy runtime
monitoring with
log analysis
(Elastic Stack 191,
CloudWatch [201)

Implement
parameterized
queries;

utilize ORMs
for database
interactions

Configure
CORS settings
restrictively

Create AI Security
Architect role for
prompt libraries
and validation
protocols

Establish IP
ownership
policies for AI-
generated code

Establish
feedback loops
from monitoring
insights

to prompt
refinement

Encrypt sensitive
data at rest; use
HTTPS for all
transmissions

Implement CSRF
tokens in all
forms

Implement
prompt
engineering
governance
with mandatory
security
requirements

Implement
bias detection
processes in
generated
outputs

Conduct regular
security audits
of Al-generated
codebases

The adoption of Al-generated code also brings forth a complex array of ethical
and legal considerations that organizations must proactively address.

.. Bias Mitigation: Al models are trained on historical data, which may
<N inherently contain and perpetuate biases (e.g., gender, racial, cultural). If
this biased data is used to train Al code generation systems, the resulting
code could also exhibit biases, potentially leading to discrimination
or unfair outcomes for certain groups of people. It is crucial to check
for harmful data values, ensure data inclusivity in training datasets,
and actively evaluate the generated code for biases throughout the
development process.

https://docs.aws.amazon.com/secretsmanager/
https://developer.hashicorp.com/vault/docs
https://www.elastic.co/guide/en/elasticsearch/reference/current/
https://docs.aws.amazon.com/cloudwatch/
https://tools.ietf.org/rfc/rfc6749.txt

Secure Vibe Coding Best
Practices Checklist

25

Intellectual Property Rights and Copyright: The legal landscape
surrounding the ownership and copyright of Al-generated code is
complex and largely unsettled. Traditional copyright law typically
requires human authorship, and Al-generated works may not be eligible
for copyright protection without clear evidence of substantial human
creative input. This ambiguity can lead to unclear intellectual property
rights and ownership issues. Furthermore, Al-generated code frequently
incorporates or references existing open-source libraries, many of which
come with specific licensing requirements. This "license contamination"
can inadvertently expose companies to significant legal liabilities if not
properly managed. Transparency regarding the Al tools used to generate
code is recommended, as it can help clarify potential sources and
associated legal implications.

Accountability and Responsibility: As Al systems increasingly
operate autonomously in code generation, questions arise regarding
accountability for errors, security vulnerabilities, or system failures that
may result from Al-generated code. To address this, developers need to
be able to trace the logic and decisions that influenced the AI's outputs,
ensuring a clear chain of responsibility.

Privacy and Data Protection: Al-based development tools often rely
on large datasets for training and operation, raising concerns about
privacy and data protection. These datasets must comply with relevant
privacy regulations, such as GDPR[21]. Rigorous oversight is necessary to
prevent Al systems from inadvertently exposing private information or
creating vulnerabilities that could be exploited by malicious actors. Users
should exercise caution when submitting content, especially sensitive or
proprietary data they did not create, to Al platforms, as terms of service
may grant the Al tool rights to reuse or distribute this content.

Environmental Impact: The building, training, and ongoing use of
generative Al models require significant energy consumption and water
for cooling, contributing to carbon emissions. Organizations should
consider the environmental impact of their Al usage and strive for

efficient deployment and operation of these tools.

Category

Prompt
Engineering

Best Practice
Explicit Security

Directives

Multi-Stage
Prompting

Negative
Constraints

Description/
Action

Always include
specific security
requirements
(e.g., input
validation, auth,
OWASP) in
prompts.

Prompt Al to
generate code,
then prompt it
again to review
its own output for
security flaws.

Explicitly forbid
insecure practices
(e.g., hardcoding
secrets, eval()) in
prompts.

Key Benefit

Nudges Al to
generate safer
code from the
start.

Catches
vulnerabilities by
forcing Al to self-
assess security.

Establishes
non-negotiable
security
boundaries for Al

https://eur-lex.europa.eu/eli/reg/2016/679/oj

26

Code Review

Automated
Tools

Data Handling

Critical Human
Review

Refactoring for
Clarity

SAST/DAST
Integration

Dependency
Scanning

Secrets Detection

Input Validation/
Sanitization

Secure Secrets
Management

Database Security

Assume Al-
generated code is
insecure; conduct
thorough peer
reviews for subtle
vulnerabilities.

Clean up verbose/
inconsistent Al
code; improve
variable names;
align with project
standards.

Integrate Static
(SAST) and
Dynamic (DAST)
Application
Security Testing
into CI/CD
pipelines.

Use tools to
scan third-
party libraries
for known
vulnerabilities.

Employ tools to
scan codebases
and Git history
for exposed
credentials.

Rigorously
validate and
sanitize all user
inputs to prevent
injection attacks
(SQL, XSS, Path
Traversal).

Use environment
variables or
dedicated secret
management
tools; never
hardcode
credentials.

Protect data

with encryption,
parameterized
queries, and least
privilege access;
hash and salt
sensitive data.

Identifies
nuanced issues
missed by
automated tools;
ensures business
logic security.

Enhances
correctness,
maintainability,
and security.

Flags common
vulnerabilities
early; tests
runtime behavior.

Prevents supply
chain attacks
from insecure
dependencies.

Prevents
accidental
leakage of
sensitive
information.

Protects against
common web
application
vulnerabilities.

Prevents
catastrophic
security breaches
if code becomes
public.

Safeguards
sensitive
information in the
database.

Compliance & IP Due Diligence

Ethics
Bias Mitigation
Transparency &
Accountability
General Version Control
Practices

Continuous
Monitoring

Secure API Design

27

Understand

and manage
intellectual
property rights
and licensing
for Al-generated
code and its
components.

Actively check
for and address
biases in training
data and Al-
generated code.

Document Al tool
usage; ensure
traceability

of Al outputs;
establish clear
accountability
frameworks.

Use Git religiously
for snapshots
and easy

reverts; commit
frequently.

Implement
proactive
monitoring and
log analysis to
detect runtime
vulnerabilities
and anomalies.

Implement robust
authentication
(MFA, OAuth) and
authorization
(RBAC, least
privilege) for all
APIs.

Mitigates legal
risks related

to ownership
and license
contamination.

Ensures fairness
and prevents
perpetuation of
discrimination.

Promotes
responsible Al
development and
helps address
issues.

Prevents data
loss; enables
fearless
experimentation
and easier
debugging.

Identifies issues
not caught during
static analysis;
provides real-time
alerts.

Controls access to
sensitive data and
functionality.

8. Conclusion and Recommendations

Vibe coding represents a transformative leap in software creation — blending speed, creativity, and
accessibility. Yet, as discussed throughout this guide, it introduces new risks that demand a proactive security-
first mindset. Al can amplify innovation, but it cannot substitute sound engineering judgment.

8.1 Key
Recommendations for
Organizations:

8.2 Key Recommendations
for Developers:

28

Invest in Training and Upskilling: Prioritize continuous training for developers
and security teams. This training should focus on secure prompt engineering,
critical code review of Al-generated output, and a deep understanding of
underlying Al limitations and potential failure modes.

Establish Robust Security Workflows: Integrate automated security testing
tools, including Static Application Security Testing (SAST), Dynamic Application
Security Testing (DAST), and Software Composition Analysis (SCA), into all CI/CD
pipelines. Complement these automated checks with rigorous, human-led code
review processes for all AI-generated code, especially for critical functionalities
and edge cases.

Standardize Secure Prompting: Develop and enforce internal guidelines and
potentially tools for crafting secure prompts. These guidelines should explicitly
include security requirements, constraints, and forbidden behaviors to guide
AI models toward generating safer code from the outset. This makes prompt
engineering a critical security control point, enabling "security by design" at the
earliest stage.

Implement Strong Data and Access Controls: Enforce strict secrets
management practices, ensuring sensitive data is never hardcoded. Design
and implement secure API endpoints with robust authentication (e.g., MFA) and
authorization (e.g., Role-Based Access Control, least privilege) mechanisms.

Address Legal and Ethical Implications: Develop clear internal policies
and frameworks for intellectual property ownership, license compliance, bias
mitigation, and data privacy specifically related to Al-generated code. Foster
transparency about Al tool usage and establish clear accountability for Al-
generated outputs.

Adopt a Hybrid Development Model: Strategically leverage vibe coding

for rapid prototyping, idea validation, and automation of repetitive tasks.
Simultaneously, maintain and invest in traditional coding expertise for
developing complex, mission-critical, and legacy systems, ensuring a seamless
and secure integration between both approaches.

Never Trust, Always Verify: Approach all AlI-generated code with a critical
mindset, assuming it may contain vulnerabilities. Thoroughly review and test
every piece of Al-generated output before integration.

Master Prompt Engineering: Develop strong skills in crafting clear, specific,
and security-aware prompts. Understand how to provide sufficient context and
explicit security directives to guide the Al effectively.

Maintain Foundational Knowledge: Continuously deepen your understanding
of core coding principles, secure coding best practices, and system architecture.
This fundamental knowledge is crucial for identifying and rectifying issues that
Al might miss or introduce.

Utilize Security Tools: Integrate and effectively use automated security testing
tools (SAST, DAST, SCA) in your development workflow. Leverage Al-assisted
debugging and code auditing tools where available.

8.3 Strategies for
Addressing the

Accessibhility-Security

Paradox

8.3.1 Tiered Development

Framework

8.3.2 Technological
Solutions

29

Practice Secure Coding Habits: Apply principles like rigorous input validation,
secure secrets management, proper error handling, and robust authentication/
authorization consistently, regardless of whether the code was human- or Al-

generated.

Organizations can balance democratized access with security controls through

structured tiers:

Implementation Framework:

User Profile

Permitted
Applications

Security

Controls

Oversight

Security
Guardrails:

Continuous
Validation
Pipelines:

Tier 1:
Supervised

Non-technical
domain experts

Internal
tools; Process
automation

Pre-approved
prompt
templates;
Automated
scanning;
Mandatory expert
review

Dedicated
security reviewer;
Restricted
deployment

AI Security Co-
Pilots: Specialized
LLMs trained to
analyze code for
vulnerabilities,
serving as
automated
security reviewers

Prompt-to-
Production
Security Gates:
Automated
checkpoints
validating code at
each stage with
risk-appropriate
security
complexity

Tier 2:
Guided

Technical domain
experts; Citizen
developers

Departmental
applications;
Integration
components

Semi-automated
validation;
Security-
enhanced
prompts

Security
champion pairing;
Periodic reviews

Security-
Enhanced
Prompt
Libraries: Pre-
vetted prompt
collections with
built-in security
controls for non-
experts

Security Drift
Detection:
Monitoring
systems
identifying when
Al code deviates
from expected
security patterns

Tier 3:
Expert

Experienced
developers;
Security-trained
engineers

Critical systems;
Customer-facing
applications

Self-certification;
Advanced security
testing

Spot checks; Risk-
based reviews

Automated
Security
Verification:
Static and
dynamic analysis
tools calibrated
for Al-generated
code patterns

Compliance
Verification:
Tools mapping Al-
generated code
against regulatory
requirements and
organizational
policies

8.3.3 Organizational Upskilling

Implementation Programs:
Collaborative
Models:

8.3.4 Progressive Risk Risk-Based

Management Approach:

Prompt
Engineering
Security
Certification:
Training
developers on
security-focused
prompt design
and validation

Security-
Developer-Al
Triads: Cross-
functional
teams where
security experts,
developers, and
Al specialists
collaborate

Graduated
Security
Requirements:
Tailoring controls
based on
application risk
level—higher-
risk applications
require more
extensive security
measures

and expert
involvement

Security
Champion
Networks:
Embedding
security-trained
individuals within
development
teams for
guidance and
first-line review

Expert Advisory
Panels: On-
demand security
expert access

for high-risk
applications
without creating
development
bottlenecks

Proportional
Resource
Allocation:
Directing security
resources based
on project risk,
ensuring critical
applications
receive
appropriate
attention without
overburdening
low-risk projects

AI-Security
Fusion Roles:
New positions
blending Al
expertise
with security
knowledge

Communities
of Practice:
Organization-
wide knowledge
sharing focused
on secure vibe
coding

Continuous
Feedback
Integration:
Capturing security
lessons learned
and feeding

them back into
prompting
practices and
security controls

This framework enables organizations to harness vibe coding's democratization
benefits while maintaining robust security posture through appropriate controls,

training, and technological safeguards.

-

~

30

Sources

+ rellecdiz

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Karpathy, Andrej. "vibe coding," X (Twitter), February 6, 2025.

Y Combinator. "Vibe Coding Is The Future," YC Startup Library, March 5,
2025.

GitGuardian. "The Hidden Breach: Secrets Leaked Outside the Codebase
Pose a Serious Threat," GitGuardian Blog, March 31, 2025.

European Parliament and Council. "Requlation (EU) 2024/1689 on Artificial
Intelligence (AI Act)," Official Journal of the European Union, Article 1, July
12, 2024.

National Institute of Standards and Technology. "AI Risk Management
Framework (AI RMF 1.0)," NIST, January 2023.

U.S. Department of Health and Human Services. "Health Insurance
Portability and Accountability Act of 1996 (HIPAA)," Public Law 104-191,
August 21, 1996.

U.S. Food and Drug Administration. "Digital Health Center of Excellence,"
FDA.gov, accessed June 2025.

U.S. Department of the Treasury. "Managing Artificial Intelligence-Specific
Cybersecurity Risks in the Financial Services Sector," March 2024.

National Institute of Standards and Technology. "Framework for
Improving Critical Infrastructure Cybersecurity (Version 1.1)," April 16,
2018.

General Services Administration. "FedRAMP Security Controls Baseline,"
FedRAMP.gov, accessed June 2025.

U.S. Department of Defense. "Cybersecurity Maturity Model Certification
(CMMC) Model Overview," CMMC-COE, Version 2.0, November 2021.

International Organization for Standardization. "ISO/IEC JTC 1/SC 42
Artificial Intelligence," ISO.org, accessed June 2025.

OWASP Foundation. "OWASP AI Security and Privacy Guide," accessed June
2025.

Biryukov, Alex, Daniel Dinu, and Dmitry Khovratovich. "Argon2: New
Generation of Memory-Hard Functions for Password Hashing and Other
Applications," IEEE European Symposium on Security and Privacy, 2016.

OWASP Foundation. "OWASP Dependency-Check," accessed June 2025.

Amazon Web Services. "AWS Secrets Manager Developer Guide," accessed
June 2025.

HashiCorp. "Vault Documentation," accessed June 2025.

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework," RFC 6749,
Internet Engineering Task Force, October 2012.

Elastic N.V. "Elasticsearch Guide: Manage Compute Resources," Elastic
Documentation, accessed June 2025.

Amazon Web Services. "Amazon CloudWatch User Guide," accessed June
2025.

European Parliament and Council. "Requlation (EU) 2016/679 on the
General Data Protection Regulation (GDPR)," Official Journal of the
European Union, April 27, 2016.

 https://x.com/karpathy/status/1886192184808149383

https://www.ycombinator.com/library/ME-vibe-coding-is-the-future
https://www.ycombinator.com/library/ME-vibe-coding-is-the-future
https://blog.gitguardian.com/secrets-leaked-outside-the-codebase/
https://blog.gitguardian.com/secrets-leaked-outside-the-codebase/
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf

https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf

 https://www.hhs.gov/hipaa/index.html
 https://www.hhs.gov/hipaa/index.html
 https://www.hhs.gov/hipaa/index.html
https://www.fda.gov/medical-devices/digital-health-center-excellence

https://www.fda.gov/medical-devices/digital-health-center-excellence

https://home.treasury.gov/system/files/136/Managing-AI-Specific-Cybersecurity-Risks-In-the-Financial-Services-Sector.pdf
https://home.treasury.gov/system/files/136/Managing-AI-Specific-Cybersecurity-Risks-In-the-Financial-Services-Sector.pdf
 https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

 https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

 https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

https://www.fedramp.gov/assets/resources/templates/FedRAMP-SSP-A12-Security-Controls-Baseline-Template.xlsx

https://www.fedramp.gov/assets/resources/templates/FedRAMP-SSP-A12-Security-Controls-Baseline-Template.xlsx

https://dodcio.defense.gov/CMMC/
https://dodcio.defense.gov/CMMC/
https://www.iso.org/committee/6794475.html

https://www.iso.org/committee/6794475.html

https://owasp.org/www-project-ai-security-and-privacy-guide/
https://owasp.org/www-project-ai-security-and-privacy-guide/
https://www.password-hashing.net/argon2-specs.pdf
https://www.password-hashing.net/argon2-specs.pdf
https://www.password-hashing.net/argon2-specs.pdf
https://owasp.org/www-project-dependency-check/
https://docs.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/secretsmanager/
https://developer.hashicorp.com/vault/docs

https://tools.ietf.org/rfc/rfc6749.txt

https://tools.ietf.org/rfc/rfc6749.txt

https://www.elastic.co/guide/en/elasticsearch/reference/current/

https://www.elastic.co/guide/en/elasticsearch/reference/current/

 https://docs.aws.amazon.com/cloudwatch/

 https://docs.aws.amazon.com/cloudwatch/

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

= rellecdiz

[22] Perry, Neil, Megha Srivastava, Deepak Kumar, and Dan Boneh. "Do
Users Write More Insecure Code with AI Assistants?" arXiv preprint,
arXiv:2211.03622, November 7, 2022.

[23] Stack Overflow. "2023 Developer Survey Results," Stack Overflow, 2023.

[24] Kalliamvakou, Eirini. "Research: quantifying GitHub Copilot's impact on
developer productivity and happiness," GitHub Blog, September 7, 2022.

https://arxiv.org/abs/2211.03622
https://arxiv.org/abs/2211.03622
https://arxiv.org/abs/2211.03622
https://survey.stackoverflow.co/2023/

 https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

 https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

