
SECURE
VIBE
CODING

Whitepaper

SECURE
VIBE
CODING
SECURE
VIBE
CODING

The
Complete
New Guide

2

Executive
Summary

25% 55%

Vibe coding marks a revolutionary leap in software development, enabling
rapid code generation through natural language prompts. This paradigm shift
dramatically accelerates prototyping, democratizes software creation for both
developers and non-technical users, and allows a sharper focus on creative
problem-solving over intricate syntax. Early adoption rates are significant:

However, the speed and accessibility of AI-generated code come with a caveat:
it often lacks built-in security. Large Language Models (LLMs) are trained
for completion, not protection, and can introduce subtle, high-impact
vulnerabilities. A deeper analysis of these risks is provided in Section 4.

This guide serves as an essential resource for navigating the complexities of
vibe coding, emphasizing that its transformative potential can only be realized
responsibly through a robust "human-in-the-loop" methodology. It outlines the
imperative for:

By embracing these strategies, organizations can effectively mitigate the
inherent security risks, leverage vibe coding as a powerful augmentation to
traditional development, and foster a future where innovation is both rapid and
secure.

Secure Prompt Engineering:
Crafting explicit and security-aware prompts to guide AI models towards
generating safer code from inception.

Integrated Security Workflows:
Implementing continuous security validation pipelines, comprehensive
human code reviews, and advanced automated testing (SAST, DAST, SCA)
throughout the development lifecycle.

Proactive Governance:
Establishing clear organizational policies, audit models, and continuous
monitoring to manage risks and ensure compliance with evolving
regulatory frameworks like the EU AI Act and NIST AI Risk Management
Framework.

of Y Combinator startups leveraging
AI for core codebase development by
2025 [2]

Developer productivity is increasing
overall by up to

[24]

https://www.ycombinator.com/library/ME-vibe-coding-is-the-future
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

3

Table of
Contents

4
4
4
4

6
6
6
7
8
9

10

11
11
12
12

13
13
14

18
18
18
19
19
19
19
20
20
20

20
20
21

23
23
24
24
24

28
28
28
29
29
29
30
30

1. Introduction to Vibe Coding...
 1.1 Defining Vibe Coding: Natural Language to Code Generation.................
 1.2 The Genesis and Core Philosophy...
 1.3 How Vibe Coding Works in Practice..

2. The Evolving Scope and Applications of Vibe Coding..............................
 2.1 Key Advantages and Use Cases..
 2.2 Current Limitations and Challenges ..
 2.3 Tool-Specific Analysis: AI Coding Systems Comparison.............................
 2.3.1 Comparative Analysis of Leading Vibe Coding AI Systems............
 2.3.2 Tool-Specific Security Behavior Analysis...
 2.3.3 Tool-Specific Secure Prompting Strategies.......................................

3. Vibe Coding Trends and Future Trajectories..
 3.1 Current Adoption and Industry Impact..
 3.2 Redefining Developer Roles...
 3.3 The Future of Human-AI Co-Agency in Software Development................

4. Understanding Security Vulnerabilities in Vibe Coding.........................
 4.1 Why AI-Generated Code Isn't Inherently Secure
 4.2 Common Security Flaws and Attack Vectors ..

5. Emerging Standards and Governance for AI-Generated Code
 5.1 Regulatory Landscape and Compliance Considerations...........................
 5.1.1 Evolving Regulatory Frameworks ...
 5.1.2 Industry-Specific Compliance Considerations
 5.2 Emerging Standards and Certification Approaches
 5.2.1 AI Code Generation Standards Development
 5.2.2 Voluntary Certification Programs ..
 5.3 Governance Models for Vibe Coding Implementation
 5.3.1 Organizational Governance Structures ...
 5.3.2 Audit and Assurance Models ...

6. Crafting Prompts for Secure Vibe Coding ..
 6.1 Identifying Insecure Prompting Patterns ...
 6.2 Strategies for Secure Prompt Engineering ...

7. Best Practices for Secure Vibe Coding Implementation
 7.1 Implementation Workflow ...
 7.2 Technical Implementation Standards ...
 7.3 Organizational Implementation ..
 7.4 Addressing Ethical and Legal Considerations ..

8. Conclusion and Recommendations ...
 8.1 Key Recommendations for Organizations ...
 8.2 Key Recommendations for Developers ..
 8.3 Strategies for Addressing the Accessibility-Security Paradox
 8.3.1 Tiered Development Models ...
 8.3.2 Technological Solutions ...
 8.3.3 Organizational Implementation ...
 8.3.4 Progressive Risk Management Framework

4

1. Introduction to Vibe Coding

1.1 Defining Vibe Coding:
Natural Language to
Code Generation

1.2 The Genesis and Core
Philosophy

1.3 How Vibe Coding
Works in Practice

Vibe coding is an emerging and revolutionary approach to software
development where users communicate their desired application functionality
to AI tools using natural language, rather than engaging in manual code writing.
The AI then assumes responsibility for the technical implementation, translating
plain speech into executable code. This methodology fundamentally redefines
programming as an "intent-based outcome specification," where the user
articulates the desired end result, and the AI determines the precise technical
steps to achieve it.

This approach marks a significant departure from traditional, manual coding
paradigms, ushering in a more flexible and AI-powered development process.
The emphasis shifts from meticulous syntax and intricate technical details
to articulating the "vibe" or essence of the desired outcome, allowing for a
more intuitive and creative development experience. The process is inherently
iterative; users provide feedback to the AI on the generated code, describing
issues or requesting changes until the desired functionality is achieved. This
conversational, back-and-forth interaction is a central characteristic of vibe
coding.

This shift means the democratization of software creation. The fundamental
move from syntax-driven coding to natural language interaction inherently
lowers the barrier to entry for software development. This is not merely about
enhancing efficiency for existing coders; it is about empowering a much
broader audience, including non-programmers, domain experts, entrepreneurs,
and designers, to create functional applications. The ability to describe an
application's behavior in plain language, rather than writing lines of code,
removes many traditional technical barriers. This means that individuals who
possess deep knowledge in a specific domain but lack coding proficiency
can now directly contribute to digital solutions, addressing their personal or
organizational needs. This broadening of participation is evident in various
sectors, including government, where employees can create custom applications
without extensive IT expertise, and in education, where students can focus
on creative exploration rather than being bogged down by complex coding
requirements. This expansion of access suggests a future where ideation is no
longer confined to technical teams, leading to a potentially more diverse and
innovative array of applications.

The term "vibe coding" was coined by Andrej Karpathy, co-founder of OpenAI, in
February 2025, describing it as "giving in to the vibes, embrace exponentials, and
forget that the code even exists."[1]
This philosophy prioritizes rapid experimentation over structural perfection,
with AI agents functioning as real-time coding assistants that automate tedious
processes. The approach shifts developer focus from syntax minutiae to higher-
level intent and creative problem-solving.
However, the core tenet of "forget that the code even exists" creates significant
security challenges. When users are encouraged to abstract away from code
mechanics, they inherently bypass critical understanding of how and why the
code functions. This abstraction gap makes it difficult to identify vulnerabilities,
maintain complex systems, or critically evaluate AI-generated output—
establishing a direct link between vibe coding's accessibility philosophy and its
security risks.

Vibe coding is characterized by a conversational, back-and-forth interaction with
AI agents. Users describe their requirements, the AI generates corresponding
code, and users then provide feedback on errors or desired changes, initiating
an iterative refinement loop.

https://x.com/karpathy/status/1886192184808149383

5

The practical application of vibe coding typically follows a structured, step-by-
step process:

The tools utilized in vibe coding are predominantly large language models
(LLMs) such as ChatGPT, Claude, OpenAI's Codex, GPT-4, and DeepSeek, which
are capable of conversational code generation and structured code tasks.
Additionally, integrated AI coding assistants like GitHub Copilot, Cursor AI,
and Amazon CodeWhisperer play a crucial role, often functioning as "pair
programmers" that offer real-time suggestions, fix bugs, and enhance code
structure.

A significant implication of vibe coding is the evolving definition of a
"programming language." This approach suggests that natural human
language, such as English, is becoming a de facto programming language,
abstracting away the need for traditional, formal syntax. This concept carries
profound implications for how future developers are trained and how software
is conceptualized. If natural language is sufficient to generate functional
code, then the conventional understanding of a programming language – a
formal, artificial language designed to communicate precise instructions to a
machine – is being fundamentally challenged. The interface to computation
is shifting from rigid, formal syntax to the more fluid and semantic nuances
of human expression. This suggests a future where "coding" may involve less
memorization of specific syntax rules and more precise articulation of intent,
potentially leading to a convergence of roles traditionally separated, such
as product management, design, and development. It also raises complex
questions about the robustness and expressiveness of natural language as a
programming interface for highly complex and mission-critical systems.

1. Identify
Problem or Goal

Every vibe
coding session
commences with
a clear need or a
defined idea for a
software solution.

3. AI Generates
Code

Large Language
Models (LLMs)
interpret the
natural language
prompts and
subsequently
produce
functional code
based on the
instructions
provided.

2. Write Clear
Prompt

Users articulate
their intention
using natural
language
prompts. The
effectiveness of
the AI's output is
highly dependent
on the clarity,
specificity, and
contextual
richness of these
prompts.

4. Review and
Refine

Users review
the generated
output, test its
functionality,
and then iterate
by providing
further prompts
to address any
issues, refine
existing features,
or add new
functionalities.

6

2. The Evolving Scope and Applications of Vibe Coding

2.1 Key Advantages and
Use Cases

2.2 Current Limitations
and Challenges

Vibe coding offers compelling advantages that are reshaping software
development:

Practical Applications
Vibe coding excels in building internal tools, automation scripts, simple web
applications, chatbots, and lightweight integrations. It's particularly valuable for
government process automation, educational projects, and helping experienced
developers learn new frameworks through scaffolding and sample generation.

Strategic Positioning
Most teams adopt a hybrid approach—using vibe coding for rapid prototyping
and repetitive tasks while maintaining traditional coding for complex, mission-
critical systems. This suggests vibe coding functions best as augmentation rather
than replacement, requiring new strategies for integrating AI-generated code
into existing CI/CD pipelines and development workflows.

Despite its numerous benefits, vibe coding is not without its limitations and
challenges:

Technical Complexity: While vibe coding can handle basic standard
frameworks, it often becomes challenging for real-world applications with novel
or complex technical requirements. The AI may generate basic or incomplete
code for highly specific or intricate functionalities.

Rapid
Prototyping
Build MVPs in
hours rather
than weeks,
enabling fast
idea validation
and iterative
development
cycles

Creative
Problem-Solving
Frees developers
from syntax
details to focus
on architecture,
user experience,
and complex
challenges

Productivity
Gains
Up to 55% faster
completion times
by automating
repetitive tasks
like boilerplate
code, basic data
operations, and
standard patterns
[24]

Democratized
Development
Empowers non-
programmers,
domain
experts, and
entrepreneurs to
create functional
applications
by describing
desired
functionality in
plain language

Experimentation

Ideal for side
projects, concept
validation,
and rapid
iteration without
significant time
investment

Speed and Accessibility

Enhanced Focus and Innovation

https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

7

Code Quality and Performance Issues: AI-generated code frequently requires
optimization and refinement to maintain high quality. It can be inefficient,
difficult to comprehend, or stylistically inconsistent. It is generally not an ideal
choice for distributed applications, which demand structured architecture and
sophisticated optimization strategies.

Debugging Challenges: Code generated by AI can be challenging to debug due
to its dynamic nature, lack of architectural structure, opaque underlying logic,
and absence of clear documentation or intent. Errors can compound rapidly if
not addressed and fixed early in the development process.

Maintainability and Long-Term Reliability: The speed and convenience
offered by vibe coding often come at the cost of flexibility and long-term
maintainability, particularly for complex or large-scale projects where fine-
grained control over every system component is essential.

Over-reliance on AI / Knowledge Gaps: There is a notable potential for users
to become overly dependent on AI tools, which can hinder the development of
their own fundamental coding skills and lead to knowledge gaps regarding the
underlying "why" of the code. If issues arise, users may struggle to resolve them
due to a lack of foundational understanding of how the code operates. This can
become a critical issue in professional settings where a deep understanding of
the system is paramount for long-term success.

Prompt Dead-Ends: Developers may encounter situations where the AI fails to
adequately understand or fulfill complex or nuanced requests. In such cases,
users must often reframe their prompts, break down the problem into smaller,
more manageable parts, or even switch to different tools.

The rapid generation of code through vibe coding, coupled with potential issues
in quality, consistency, and a lack of clear logic or documentation, creates a
significant risk of accumulating "hidden technical debt". This debt may not be
immediately apparent during initial development but can lead to increased
maintenance load, longer debugging times, and scalability issues as projects
evolve. The speed of generation can inadvertently mask underlying structural
and quality issues. Without proper human review and refinement, these issues
can compound over time, creating a burden that will eventually slow down
development or lead to system failures, much like traditional technical debt but
potentially harder to identify due to the opaque nature of AI-generated code.
Organizations must therefore factor in the ongoing cost of "refactoring and
maintaining AI-generated code" and invest in tools and processes that help
visualize, document, and manage this new form of technical debt, rather than
solely prioritizing initial generation speed.

8

2.3 Tool-Specific Analysis:

2.3.1 Comparative Analysis
of Leading Vibe Coding AI
Systems

OpenAI Codex / GPT-4

Key Strengths:
Versatile, strong conceptual
understanding

Code vulnerability
detection in
Copilot; Context
window allows
for architectural
understanding

May suggest
deprecated
libraries;
Occasional
hallucination
of non-existent
functions

Full-stack web
development;
Complex
algorithmic
challenges

Tendency to
generate verbose
code that may
obscure security
issues; Strong at
syntax but weaker
at system-level
security

Claude

Key Strengths:
Strong explanations,
natural language focus

Risk-aware
prompting
capabilities;
Strong
documentation
generation

Less specialized
for certain
programming
domains;
Newer to code
generation

Documentation-
heavy projects;
Security-critical
applications
where
explanations
matter

Excels at
explaining
security
implications;
Conservative
approach
to security
recommendations

DeepSeek Coder

Key Strengths:
Specialized for coding
tasks; Deep knowledge of
repositories

Repository-aware
code suggestions;
Built-in linting
capabilities

More limited
general
knowledge
outside coding
domain

Performance-
critical
applications;
System-level
programming

Strong static
analysis
integration;
Weaker at
detecting logical
security flaws

GitHub Copilot

Key Strengths:
IDE integration; Repository
context awareness

Real-time security
scanning; OWASP
vulnerability
detection

Over-reliance
on context;
Suggestions
based on patterns
not security

Rapid prototyping
within existing
codebases;
Augmenting
developer
workflow

Rapid prototyping
within existing
codebases;
Augmenting
developer
workflow

Amazon CodeWhisperer

Key Strengths:
AWS service integration;
Policy-compliant code
generation

Security
scan feature;
Compliance
detection

AWS-centric
solutions;
Less effective
for non-AWS
environments

Cloud
infrastructure
code; Compliant
environments

Strong in
generating
compliant code;
Service-specific
security features

AI
System

Security
Features

Notable
Limitations

Optimal
Use Cases

Security
Considerations

This section will provide a detailed comparison of major AI coding systems,
analyzing their specific security features, limitations, and best use cases.

Comparative Analysis of Leading Vibe Coding AI Systems:

AI Coding Systems Comparison

9

Cursor AI

Key Strengths:
Focused on natural
language editing of existing
code; Context-aware
refactoring

BASE44

Key Strengths:
Complete no-code
application builder;
Conversational AI interface;
Integrated deployment and
hosting

Integrated
security linting
and vulnerability
highlighting
within the editor

Built-in
authentication
and authorization;
Secure
infrastructure
with one-click
deployment;
Integration
security with
trusted services
(AWS S3, GitHub,
Supabase)

Relies heavily
on existing
codebase context;
Less suited
for generating
entirely new, large
codebases from
scratch

No direct code
access or
customization;
Limited to
platform
capabilities;
Dependency on
platform vendor

Iterative code
refinement;
Security auditing
of existing
projects;
Collaborative
secure
development

Rapid MVP
development;
Non-technical
users building
full-stack
apps; Business
automation tools;
Custom internal
applications

Can identify and
suggest fixes for
vulnerabilities
in existing code;
Effectiveness tied
to the quality
of the provided
context; Good
for human-in-
the-loop security
review

Platform-
managed security
reduces individual
responsibility but
creates vendor
dependency;
Limited visibility
into underlying
security
implementations;
Requires trust
in platform's
security practices

2.3.2 Tool-Specific Security
Behavior Analysis

Each AI system exhibits distinctive patterns when handling security-critical code
generation:

GPT-4/Codex
Tends to prioritize completeness and elegance over security when not
explicitly prompted. Requires specific security directives but offers the most
comprehensive code generation capabilities. Security vulnerabilities often
appear in edge cases handling.

Claude
More cautious with potentially risky operations. Often includes explanatory
comments about security implications and tends to suggest conservative
approaches. Provides more verbose documentation of security considerations
but may generate less optimized code.

GitHub Copilot
Leverages GitHub's security datasets to flag common vulnerability patterns.
Particularly strong at identifying issues present in public repositories but may
struggle with novel security patterns. Benefits significantly from IDE-integrated
security scanning.

Amazon CodeWhisperer
Optimized for secure AWS service integration. Includes built-in detectors for
security and compliance issues related to AWS services. Security strengths are
significantly AWS-centric.

DeepSeek Coder
Emphasizes performance and algorithmic correctness. Security approach
focuses on static analysis rather than architectural security patterns. Strong at
identifying syntax-level vulnerabilities but weaker at system-level security design.

10

Cursor AI
Excels at identifying and suggesting improvements for security vulnerabilities
within existing code by leveraging its deep contextual understanding of the
codebase. It often highlights potential security issues as part of its editing and
refactoring suggestions, enabling developers to address them proactively.

BASE44
Takes a fundamentally different approach by abstracting security
implementation entirely away from users. Security is managed at the platform
level through built-in authentication, authorization, and secure infrastructure
rather than through code-level controls. Users rely on the platform's security
implementations and trusted third-party integrations (AWS S3, Supabase,
GitHub) rather than implementing custom security measures. This approach
eliminates many common coding vulnerabilities but creates dependency on the
platform vendor's security practices and limits visibility into underlying security
implementations. Security risks shift from code-level vulnerabilities to platform
trust, configuration management, and vendor security posture.

2.3.3 Tool-Specific Secure
Prompting Strategies

Different AI systems respond optimally to different prompting patterns:

For GPT-4/Codex:

"Generate [functionality] with explicit
OWASP Top 10 protections. Include
robust input validation for [specific
attack vectors]. Follow zero-trust
principles and explain your security
reasoning."

For GitHub Copilot:

"// Security-critical function

// Requirements: Must validate all
inputs, use parameterized queries, and
implement proper error handling

// Potential threats: SQL injection, XSS,
IDOR

function..."

For DeepSeek Coder:

"/* Performance-critical and security-
sensitive function

* Constraints: No dynamic memory
allocation, bounds checking required

* Security: All inputs must be validated,
no buffer overflows
*/

Void..."

For Claude:

"Please create [functionality] that
prioritizes security over convenience.
Implement defense-in-depth patterns
including [specific security controls].
After generating the code, identify any
potential security weaknesses that
remain."

For Amazon CodeWhisperer:

"# Secure AWS Lambda function

Must comply with: least privilege,
encryption in transit/at rest

Handle sensitive data according to
compliance requirements
def..."

For Cursor AI:

"// Analyze the following code for
potential security vulnerabilities, focusing
on [specific attack vectors like SQL
injection or XSS]. Suggest refactorings to
improve security, adhering to [security
standard like OWASP Top 10]."

11

For BASE44:

"Build a [application type] that handles
[sensitive data type]. Requirements:
Implement multi-factor authentication
for all users, role-based access control
with [specific role definitions], data
encryption at rest, audit logging for all
user actions, and GDPR-compliant data
handling. Ensure the application follows
principle of least privilege and includes
session management with automatic
timeout. Integrate with [specific secure
services] and configure secure backup
procedures."

3. Vibe Coding Trends and Future Trajectories

3.1 Current Adoption and
Industry Impact

Vibe coding has experienced rapid adoption since its emergence in early 2025.
Key metrics demonstrate significant industry impact:

This acceleration enables startups to validate concepts in hours rather than
weeks, dramatically shortening time-to-market. Notable successes include Pieter
Levels' flight simulator game, which grossed $1 million in under 20 days using
largely AI-generated code.

Beyond efficiency gains, vibe coding is democratizing software creation
by expanding access to non-technical domain experts, entrepreneurs, and
designers. This shift represents a fundamental acceleration in innovation
cycles—Karpathy's "embrace exponentials" philosophy combined with rapid
prototyping capabilities suggests we're entering an era of unprecedented
application proliferation and faster market disruption.

25% 44%

Up to 55%

of Y Combinator startups are building
core codebases with AI assistance [2]

of developers had integrated AI
coding tools into workflows by 2023
[23]

faster completion times reported
across projects using vibe coding [24]

https://www.ycombinator.com/library/ME-vibe-coding-is-the-future
https://survey.stackoverflow.co/2023/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

12

3.2 Redefining Developer
Roles

3.3 The Future of Human-
AI Co-Agency

Vibe coding is fundamentally reshaping developer responsibilities, shifting
focus from manual code crafting to guiding, testing, and refining AI output.
Developers are becoming "conductors, guiding an orchestra of AI tools."

Emerging Core Skills:

Vibe coding marks the beginning of human-AI co-agency, where humans and
intelligent systems collaborate to achieve outcomes neither could accomplish
alone. This future emphasizes intuitive, human-centered development with AI
adapting to human expression rather than forcing conformity to machine logic.

Key Developments:

This continuous adaptation and learning will be crucial for navigating the
evolving landscape of human-AI collaboration in software development.

Success Strategies for Professionals:

This evolution suggests the rise of a "product engineer" archetype—blending
software engineering with product management skills. These professionals
must understand both user needs and technical implementation, translating
product vision into precise AI prompts while critically evaluating outputs. The
core competency shifts from writing efficient code to effectively orchestrating AI
capabilities and ensuring quality outcomes.

Prompt
Engineering:
Articulating
requirements
precisely to
yield effective AI
responses

Evolution of
Development
Environments:
Tools like Cursor
AI enable
seamless natural
language-to-code
workflows

Cultivate clear
communication
and prompting
skills

Critical
Evaluation:
Assessing and
integrating AI-
generated output

Voice-to-Code
Interfaces:
Developers can
literally speak
solutions into
existence

Balance AI
productivity gains
with foundational
coding knowledge

System
Architecture:
Focusing on
higher-level
design while
AI handles
implementation
details

Adaptive
AI Systems:
Technology
increasingly
conforms to
human modes of
expression

Actively explore
the expanding
AI development
ecosystem

Prioritize ethical
considerations
and quality
control in
AI-assisted
development

13

4. Understanding Security Vulnerabilities in Vibe Coding

4.1 Why AI-Generated
Code Isn't Inherently
Secure

Despite being functionally correct, AI-generated code often omits essential
security safeguards. This is not due to malice or error — it stems from the core
design of LLMs and certain prompting patterns:

The fact that AI prioritizes functional correctness over security and often lacks
architectural awareness means it can generate code that appears to work
perfectly but contains subtle, deeply embedded vulnerabilities. These can be
termed "silent killer" vulnerabilities because they are difficult to detect through
basic functional testing and can often bypass traditional Static Application
Security Testing (SAST) tools, potentially surviving CI/CD pipelines and reaching
production. The deceptive nature of these flaws, where the code functions as
requested despite its underlying insecurity, creates a false sense of security,
making them particularly insidious and challenging to identify until exploited.
This necessitates a shift from reactive security (fixing obvious bugs) to proactive,
threat-modeling-driven security reviews and advanced testing specifically
designed to uncover these subtle, logic-based vulnerabilities that AI might
introduce. This also underscores the irreplaceable role of human security
expertise in the AI-driven development landscape.

Security Reality Check

AI treats security like
an optional feature—it

won't include protections
unless explicitly requested.

Think of it as "security
by invitation only." Every

prompt is a security
decision: include security
requirements or accept

insecure defaults.

LLM Limitations and Pattern Completion Over Intent: LLMs primarily
function by predicting the next most probable token in a sequence,
rather than applying deep security engineering principles. They prioritize
fulfilling functional requirements over security considerations and often
lack the contextual understanding of an application's specific security
requirements or an organization's established best practices. This means
that AI can generate code that appears functional but omits critical
security measures simply because they were not explicitly requested in
the prompt.

Lack of Architectural Awareness: Current LLMs typically generate code
at the function or module level without a comprehensive understanding of
system-level architectural constraints, such as session state, inter-service
interactions, or permission enforcement. This can lead to the introduction
of vulnerabilities like broken access controls, missing state checks, or
logic flaws that only become apparent when the code is integrated into a
broader system.

Training Data Flaws: AI models are trained on vast datasets of existing
code, which may unfortunately include inherent flaws, outdated security
practices, or even biased human-created code. This means that the AI can
perpetuate or inadvertently introduce known vulnerabilities present in its
training data. Research indicates that LLM-generated code is "inherently
insecure.”A Stanford University study suggested that 36% of participants
with access to AI assistants wrote solutions vulnerable to SQL injection
compared to 7% of the control group [22].

Rapid Deployment vs. Security Review Capacity: The speed at which
AI can generate code often outpaces the capacity of human security
teams to review it thoroughly. This can lead to vulnerable code being
pushed into production environments without adequate scrutiny.

Insecure Prompting Patterns: As further discussed in Section 6.1, the
quality and security of AI-generated code are profoundly influenced by
the prompts provided by the user. Vague instructions, the omission of
explicit security requirements, implicit trust in AI outputs without human
validation, and a sole focus on speed over quality significantly increase the
likelihood of introducing vulnerabilities. The AI's default behavior, unless
otherwise nudged, is to prioritize functional completion over security.

https://arxiv.org/abs/2211.03622

14

4.2 Common Security
Flaws and Attack Vectors

AI-generated code can introduce a range of common security flaws and attack
vectors, often due to the AI's focus on functionality over security or its lack of
contextual understanding. These include:

Data Security Vulnerabilities:

DataHub Connect's junior developer Alex used AI to generate code for fetching
stock market data. Using the prompt "Generate Python code to fetch stock prices
from 'MarketData API' for given symbols," the AI produced:

Alex, unaware of the security implications, pushed this code to their private
repository.

The Impact:

API Abuse
Risk:
Exposed keys
could enable
unauthorized
calls, incurring
overage charges
or depleting
quotas

Operational
Disruption:
Key rotation
would require
downtime for the
internal tool

Reputational
Damage:
Security incidents
erode client trust

Python

import requests

def get_stock_price(symbol):
 api_key = "YOUR_HARDCODED_API_KEY_12345" # AI inserted this for
 immediate functionality
 url = f"https://api.marketdata.com/v1/quotes/{symbol}?apiKey={api_
 key}"
 response = requests.get(url)
 return response.json()

Hardcoded Credentials and Exposed
Secrets: AI tools frequently suggest
embedding sensitive information
such as API keys, secrets, or database
passwords directly within the source
code. This makes credentials visible to
anyone with access to the codebase
and risks their persistence in version
control history. The GitGuardian's
State of Secrets Sprawl Report 2025
indicated that nearly 24 million secrets
were inadvertently exposed on GitHub
in one year, with repositories using AI
coding tools showing a 40% higher
rate of secret exposure [3].

Sensitive Information Exposure:
Debug or error messages generated
by AI might inadvertently reveal
internal system details or sensitive
information.

 Case Study The Exposed API Key

https://blog.gitguardian.com/secrets-leaked-outside-the-codebase/

15

Key Lessons:

This example illustrates the "security by omission" problem—AI omits security
measures unless explicitly instructed, making human oversight essential.

Unsafe Data Handling and Injection Attacks:

Weak Security Controls:

Missing Input Validation:
AI-generated code often lacks proper
input validation, which is crucial for
preventing various injection attacks.

Cross-Site Scripting (XSS):
AI tools may reflect user input unsafely
in web pages, enabling attackers to
inject malicious scripts that can expose
sensitive data or compromise user
sessions.

Command Injection:
Improper handling of system
commands in AI-generated code can
allow attackers to execute arbitrary
commands on the server.

Insufficient Error Handling:
Poorly implemented error handling
can inadvertently leak sensitive system
information to attackers.

Outdated Cryptographic Methods:
The AI might suggest or implement
weak or deprecated cryptographic
algorithms (e.g., MD5, SHA1, DES),
compromising data security.

SQL Injection:
Direct insertion of unsanitized user
input into database queries can allow
attackers to manipulate or steal
data from the database. A Stanford
University study suggests that
approximately 36% of AI-generated
database queries are vulnerable to
SQL injection].

Path Traversal:
This vulnerability arises when file paths
are constructed from unchecked user
input, potentially allowing attackers
to access or manipulate arbitrary files
outside the intended directory.

Missing or Weak Authentication
and Authorization:
AI-generated code may omit critical
authentication and authorization
checks, leading to unauthorized access
to sensitive data or functionality, or
allowing attackers to bypass business
logic.

Timing-Based Side-Channel Attacks:
Subtle vulnerabilities, such as using
non-constant-time comparisons for
cryptographic operations (e.g., ==
for HMAC comparison), can enable
attackers to gradually brute-force
secrets by observing response times.

1.	 Mandatory Security Review: Even simple AI-generated code needs
human security validation

2.	 Secure Prompting: Include explicit security directives: "Generate
Python code to fetch stock prices. Ensure API keys are loaded from
environment variables, not hardcoded."

3.	 Automated Detection: Implement tools like GitGuardian to scan for
exposed credentials before deployment

16

Configuration Issues:
AI-generated code might include development features enabled in production
environments, overly permissive Cross-Origin Resource Sharing (CORS) settings,
or unnecessary services enabled by default, creating potential attack vectors.

Prompt Injection:
This is a newer class of attack specific to LLMs, where attackers manipulate
language model instructions to bypass security defenses or extract sensitive
information, sometimes by "jailbreaking" the LLM to behave outside its intended
parameters. This can also lead to "Prompt Leak," where the LLM inadvertently
reveals its internal system instructions or proprietary logic, or "Denial of Wallet"
attacks, where excessive engagement with the LLM leads to substantial resource
consumption and financial implications.

Supply Chain Vulnerabilities:
AI tools may automatically add unvetted or vulnerable third-party libraries and
packages, introducing supply chain risks into the codebase.

Data Poisoning Attacks:
Malicious actors could manipulate the training data used for AI models by
injecting malicious samples, potentially creating backdoors or vulnerabilities in
the generated code.

Feedback Loops:
Insecure AI-generated code, if used as training data for newer AI models, can
create a feedback loop that perpetuates and even spreads vulnerabilities across
future code generations.

Common Vibe Coding
Security Vulnerabilities
and Examples

Vulnerability
Category

Data Security

Unsafe Data
Handling

Description

Embedding
sensitive data (API
keys, passwords,
tokens) directly in
source code.

Failure to validate
or sanitize user
input before
processing.

Debug or error
messages
revealing internal
system details.

Direct insertion
of user input
into SQL queries
without proper
sanitization,
allowing malicious
commands.

Specific
Vulnerability

Hardcoded
Credentials

Missing Input
Validation

Sensitive Info
Exposure

SQL Injection

Illustrative
Example

password:
'admin123' in
a database
connection string.

Accepting any
file type in an
upload, leading
to executable file
uploads.

An error message
displaying
full database
connection details.

SELECT * FROM
users WHERE name
= 'admin'; DROP
TABLE users; --'

17

Reflecting
unsanitized user
input in web
pages, allowing
malicious scripts
to execute in
users' browsers.

Constructing
file paths from
unchecked user
input, allowing
access to arbitrary
files.

Improper
handling
of system
commands,
allowing
attackers to
execute arbitrary
commands.

Cross-Site
Scripting (XSS)

Path Traversal

Command
Injection

Displaying
user-submitted
<script>alert('XSS');
</script> directly.

fs.readFile(file.
originalname)
where file.
originalname is
../../../etc/passwd.

AI generating code
that executes user
input directly as a
shell command.

Weak Security
Controls

Missing or
inadequate
checks to restrict
user access to
sensitive data or
functionality.

Error messages
revealing
sensitive system
information.

Use of outdated
or insecure
cryptographic
algorithms/
practices.

Using non-
constant-time
comparisons
for sensitive
data, allowing
attackers to infer
information
by measuring
response times.

Broken Access
Control

Insufficient Error
Handling

Weak
Cryptography

Timing Side-
Channel Attacks

An API endpoint
allowing any
user to download
any document
by guessing its
filename.

A generic server
error message
showing stack
traces or internal
paths.

Using MD5 for
password hashing
or reusing
Initialization
Vectors (IVs).

if (signature ==
expected) for
HMAC verification.

Configuration
Issues

Development
features enabled
in production,
overly permissive
settings.

Insecure Defaults Overly permissive
CORS settings
or debug mode
enabled in
production.

18

AI-Specific
Vulnerabilities

Manipulating
LLM instructions
to bypass
defenses or
extract sensitive
information.

AI adding
unvetted or
vulnerable third-
party libraries.

Malicious
manipulation
of AI training
data to inject
vulnerabilities.

Prompt Injection

Supply Chain
Risks

Data Poisoning

A user prompt
designed to make
the AI reveal its
internal system
prompt.

AI suggesting a
dependency with
known CVEs.

Training data
containing
intentionally
flawed code
patterns.

5. Emerging Standards and Governance for AI-Generated Code

5.1 Regulatory Landscape
and Compliance
Considerations

5.1.1 Evolving Regulatory
Frameworks

The AI Act in the European Union has introduced significant compliance
requirements for AI systems, with potential implications for vibe coding
tools classified as high-risk AI systems, particularly when deployed in critical
infrastructure, healthcare, or financial services [4].

Organizations must consider:

In the United States, the National Institute of Standards and Technology (NIST) AI
Risk Management Framework provides voluntary guidelines that organizations
can adopt. The NIST framework emphasizes [5]:

Risk
Classification:
Determining
whether their
vibe coding
implementations
fall under high-
risk categories
requiring
conformity
assessments

Governance:
Establishing clear
oversight of AI
systems

Transparency
Requirements:
Documenting AI
involvement in
code generation,
especially for
systems that
impact human
safety or rights

Mapping:
Identifying and
documenting
contexts where
AI-generated
code is used

Documentation
Burden:
Maintaining
records of
prompts,
generated code,
human review
processes,
and validation
procedures

Measurement:
Quantifying the
performance
and risks of vibe
coding practices

Management:
Implementing
controls to
address identified
risks

https://eur-lex.europa.eu/eli/reg/2024/1689/oj

19

5.1.2 Industry-
Specific Compliance
Considerations

Industry

Healthcare

ISO/IEC JTC 1/
SC 42 [12] is
developing
standards for
AI systems that
include specific
provisions for AI
code generation
systems,
focusing on
trustworthiness,
quality
assessment, and
bias detection.

AI Code Safety Certification (ACSC):
A proposed industry consortium
program requiring:

•	 Documentation of human review
processes

•	 Proof of security testing specific to
AI-generated code

•	 Implementation of continuous
security monitoring

Secure AI
Development
Lifecycle (SAIDL):
A framework
adapting
traditional secure
development
lifecycle
practices to AI-
assisted coding
environments.

IEEE P2864 (under
development)
aims to establish
standard metrics
for measuring
the reliability and
performance
of AI-assisted
software
development
tools.

OWASP AI Security and Privacy Guide
[13] has expanded to include specific
guidance on securing applications built
with AI-generated code, including:

•	 AI-specific testing methodologies

•	 Verification procedures for AI-
generated components

•	 Special considerations for prompt
injection attacks

Financial Services

Critical
Infrastructure

Government

Relevant
Regulations

HIPAA [6], FDA
Software as
Medical Device [7]

Basel Committee
on Banking
Supervision AI
guidelines [8]

NIST
Cybersecurity
Framework [9]

FedRAMP [10],
CMMC [11]

Vibe Coding Compliance
Requirements

Validation and verification
documentation; Deterministic behavior
proof; Human oversight evidence

Explicit risk management for AI-
generated code; Auditability of code
generation process

Supply chain risk management for
AI-generated components; Increased
security testing requirements

Documentation of AI involvement;
Enhanced review procedures for AI-
generated code

5.2 Emerging Standards
and Certification
Approaches

5.2.1 AI Code Generation
Standards Development

5.2.2 Voluntary
Certification Programs

Several standards organizations are developing frameworks specifically
addressing AI-generated code:

Industry-led certification programs are emerging to validate secure vibe coding
practices:

 https://www.iso.org/committee/6794475.html
https://owasp.org/www-project-ai-security-and-privacy-guide/
 https://www.fda.gov/medical-devices/digital-health-center-excellence
https://home.treasury.gov/system/files/136/Managing-AI-Specific-Cybersecurity-Risks-In-the-Financial-Services-Sector.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://www.fedramp.gov/assets/resources/templates/FedRAMP-SSP-A12-Security-Controls-Baseline-Template.xlsx
https://dodcio.defense.gov/CMMC/

20

5.3 Governance
Models for Vibe Coding
Implementation

5.3.1 Organizational
Governance Structures

5.3.2 Audit and Assurance
Models

Effective governance of vibe coding practices requires dedicated oversight roles
and clear accountability structures:

Emerging best practices for assurance of AI-generated code include:

AI Code Ethics
Committee:
Cross-functional
team responsible
for establishing
organizational
policies, reviewing
high-risk
implementations,
and ensuring
compliance
with emerging
regulations.

AI Code
Provenance
Tracking:
Maintaining
immutable
records linking
generated code to
specific prompts,
models, and
human reviewers.

AI Security
Architects:
Specialized role
focusing on the
intersection of
AI capabilities
and security
architecture,
responsible for
defining secure
prompt libraries
and validation
protocols.

Differential
Testing
Frameworks:
Comparing
outputs of
multiple AI
systems for
the same
functionality to
identify potential
security issues.

Prompt
Engineering
Governance:
Establishing
review processes
for prompts used
in production
code generation,
including
mandatory
security
requirements.

Security-
Focused Red
Teaming:
Dedicated
exercises
where security
professionals
attempt to
craft prompts
that generate
vulnerable code,
helping identify
weaknesses
in prompt
engineering
practices.

6. Crafting Prompts for Secure Vibe Coding

6.1 Identifying Insecure
Prompting Patterns

The quality and security of AI-generated code are profoundly influenced by
the prompts provided by the user. Building on the AI limitations outlined in
Section 4.1, specific prompting patterns significantly increase the likelihood
of introducing vulnerabilities because current AI models focus on functional
output unless specifically instructed to include security controls. This "pull-only"
model means developers must actively specify protections — security won't be
embedded by default.

Key insecure prompting patterns include:

Vague or Naive Instructions: Simply asking the AI to "generate code for
a specific application" without any explicit security requirements often leads
to insecure outputs. The AI's default behavior, unless otherwise nudged, is to
prioritize functional completion over security.

21

Omission of Security Requirements: Failing to explicitly request crucial
security measures, such as proper input validation, robust authentication,
comprehensive authorization, or secure error handling, means these
critical components will likely be absent from the generated code. The
AI will focus on the requested functionality and may not proactively
implement best practices if they are not part of the explicit directive.

Implicit Trust: A high-risk pattern involves developers who "prompt
an LLM, accept the output wholesale, and proceed without validation or
threat modeling." This implicit trust in the AI's output, without critical
human review, is a primary pathway for vulnerabilities to enter production
systems.

Speed-only Focus: Prioritizing rapid code generation without security
considerations in prompts introduces numerous vulnerabilities.

To mitigate the "security by omission" problem, developers must adopt strategic
prompt engineering techniques:

Explicit Security Directives Always specify security requirements within prompts,
including input validation, parameterized queries, and access controls.

Example:
"Create a user authentication system using industry-standard secure practices. Store
passwords using Argon2 [14] hashing, implement multi-factor authentication, and ensure
secure session management with token expiration."

Multi-Stage Prompting Prompt the AI twice: first to implement the feature, then to
review its own output for security issues.

Example Sequence:

Negative Constraints Explicitly prohibit insecure practices: "Never hardcode
secrets," "Avoid unsafe functions like exec or eval," or "Prohibit .env files in the
codebase."

Challenge Testing Proactively test AI responses with problematic inputs: "How
would this code handle a user input of: admin'; DROP TABLE users; --?" or "What
happens if a file upload contains a .php executable?"

Request Security Explanations Ask the AI to identify potential vulnerabilities:
"What security risks exist in this code?" or "How can we improve error handling to
prevent information leakage?"

1.
"Generate a Python Flask API endpoint
for user profile updates."

2.
"Review this Flask endpoint for security
vulnerabilities. Identify issues with
input validation, authentication, and
authorization. Suggest production-ready
improvements."

Security Reality Check: Prompting without security context is like
compiling without error handling, it works until it breaks. Unless you
explicitly guide the LLM to consider secure patterns, it will default to
functional, not defensive, code. Always assume security is opt-in,
not built-in.

6.2 Strategies for Secure
Prompt Engineering

https://www.password-hashing.net/argon2-specs.pdf

22

Secure vs. Insecure
Prompting

Feature/Task

File Upload

Insecure Prompt
Example: "Build a
file upload server."

Database
Connection

Insecure Prompt
Example:
"Connect to
my PostgreSQL
database."

API Endpoint

Insecure Prompt
Example: "Build
an API to download
documents."

User
Authentication

Insecure Prompt
Example: "Create
a login form for my
app."

Secure Prompt
Example

"Build a file
upload server
using Express and
Multer. Ensure
rigorous file type
validation (only
JPEG, PNG, GIF),
sanitize filenames
to prevent path
traversal, and
implement a
max file size of
5MB. Store files
securely."

"Connect to
a PostgreSQL
database using
environment
variables for
credentials
(DB_USER, DB_
HOST, DB_NAME,
DB_PASSWORD,
DB_PORT). Use a
connection pool."

"Build an API
endpoint to allow
authenticated
users to download
their own uploaded
documents.
Implement robust
authentication
and authorization
checks to ensure
only the document
owner can access
it."

"Create a user
authentication
system for a
web app. Store
passwords
using strong,
salted hashes
(e.g., Argon2).
Implement
multi-factor
authentication
(MFA) and
secure session
management with
token expiration."

Potential
Vulnerability

No file type
validation,
filename
sanitization, or
size limits; allows
malicious uploads
(RCE, Path
Traversal).

Hardcoded
credentials
directly in the
code.

No user context,
authentication,
authorization,
or ownership
verification.

Weak password
storage (plain
text), no MFA,
insecure session
management.

Security
Outcome

Prevents
malicious file
uploads, path
traversal,
and ensures
controlled
storage.

Prevents
exposure of
sensitive database
credentials in
source code.

Enforces proper
access control
and prevents
unauthorized
data access.

Stronger
password
security,
enhanced
user identity
verification, and
reduced session
hijacking risks.

23

Data Processing

Insecure Prompt
Example: "Process
user input for my
web form."

Error Handling

Insecure Prompt
Example: "Show
error messages if
something goes
wrong."

"Process user input
from the web form.
Validate all inputs
for correct format
and sanitize them
to prevent SQL
injection and
Cross-Site Scripting
(XSS) attacks. Use
parameterized
queries for
database
interactions."

"Implement robust
error handling that
provides user-
friendly messages
without exposing
sensitive internal
details or stack
traces. Log detailed
errors securely
on the server-side
only."

No input
sanitization,
vulnerable to XSS
or SQL injection.

Error messages
revealing internal
system details or
stack traces.

Mitigates
injection attacks
and ensures data
integrity.

Prevents
information
leakage that
attackers could
exploit.

7. Best Practices for Secure Vibe Coding Implementation

7.1 Implementation
Workflow

Code Review
Process

Automated
Security
Integration

Security Testing
Requirements

Security Reality
Check

Treat all AI-
generated code
as potentially
vulnerable

Integrate SAST/
DAST tools
(SonarQube, Snyk,
Veracode) into CI/
CD pipelines

Write security-
specific unit
tests verifying
unauthorized
access denial

Speed without oversight is just fast failure. AI can generate
a thousand lines of code in minutes, but it takes human
expertise to determine if those lines should exist in
production. The bottleneck isn't code generation—it's
security validation.

Conduct peer
reviews focusing
on business logic
and edge cases

Implement
dependency
scanning
with OWASP
Dependency-
Check [15]
or GitHub
Dependabot

Include input
sanitization tests
for known attack
vectors

Refactor verbose
AI output for
clarity and
consistency with
project standards

Deploy secrets
detection tools
(GitGuardian) to
scan codebases
and Git history

Implement DAST
methods like fuzz
testing for critical
endpoints

https://owasp.org/www-project-dependency-check/

24

7.2 Technical
Implementation
Standards

7.3 Organizational
Implementation

7.4 Addressing Ethical
and Legal Considerations

Data Handling

Governance
Structure

The adoption of AI-generated code also brings forth a complex array of ethical
and legal considerations that organizations must proactively address.

Bias Mitigation: AI models are trained on historical data, which may
inherently contain and perpetuate biases (e.g., gender, racial, cultural). If
this biased data is used to train AI code generation systems, the resulting
code could also exhibit biases, potentially leading to discrimination
or unfair outcomes for certain groups of people. It is crucial to check
for harmful data values, ensure data inclusivity in training datasets,
and actively evaluate the generated code for biases throughout the
development process.

Compliance
and Legal
Framework

Continuous
Monitoring

Access Control
Implementation

Use environment
variables or
dedicated secret
management
tools (AWS Secrets
Manager [16],
HashiCorp Vault
[17])

Establish AI Code
Ethics Committee
for policy and
high-risk review

Document AI
tool usage
for regulatory
compliance (EU
AI Act [4], NIST
Framework [5])

Deploy runtime
monitoring with
log analysis
(Elastic Stack [19],
CloudWatch [20])

Create
transparency
frameworks
linking code to
specific prompts
and reviewers

Deploy robust
authentication
(OAuth [18],
MFA) and RBAC
authorization

Implement
parameterized
queries;
utilize ORMs
for database
interactions

Create AI Security
Architect role for
prompt libraries
and validation
protocols

Establish IP
ownership
policies for AI-
generated code

Establish
feedback loops
from monitoring
insights
to prompt
refinement

Configure
CORS settings
restrictively

Encrypt sensitive
data at rest; use
HTTPS for all
transmissions

Implement
prompt
engineering
governance
with mandatory
security
requirements

Implement
bias detection
processes in
generated
outputs

Conduct regular
security audits
of AI-generated
codebases

Implement CSRF
tokens in all
forms

https://docs.aws.amazon.com/secretsmanager/
https://developer.hashicorp.com/vault/docs
https://www.elastic.co/guide/en/elasticsearch/reference/current/
https://docs.aws.amazon.com/cloudwatch/
https://tools.ietf.org/rfc/rfc6749.txt

25

Intellectual Property Rights and Copyright: The legal landscape
surrounding the ownership and copyright of AI-generated code is
complex and largely unsettled. Traditional copyright law typically
requires human authorship, and AI-generated works may not be eligible
for copyright protection without clear evidence of substantial human
creative input. This ambiguity can lead to unclear intellectual property
rights and ownership issues. Furthermore, AI-generated code frequently
incorporates or references existing open-source libraries, many of which
come with specific licensing requirements. This "license contamination"
can inadvertently expose companies to significant legal liabilities if not
properly managed. Transparency regarding the AI tools used to generate
code is recommended, as it can help clarify potential sources and
associated legal implications.

Accountability and Responsibility: As AI systems increasingly
operate autonomously in code generation, questions arise regarding
accountability for errors, security vulnerabilities, or system failures that
may result from AI-generated code. To address this, developers need to
be able to trace the logic and decisions that influenced the AI's outputs,
ensuring a clear chain of responsibility.

Privacy and Data Protection: AI-based development tools often rely
on large datasets for training and operation, raising concerns about
privacy and data protection. These datasets must comply with relevant
privacy regulations, such as GDPR [21]. Rigorous oversight is necessary to
prevent AI systems from inadvertently exposing private information or
creating vulnerabilities that could be exploited by malicious actors. Users
should exercise caution when submitting content, especially sensitive or
proprietary data they did not create, to AI platforms, as terms of service
may grant the AI tool rights to reuse or distribute this content.

Environmental Impact: The building, training, and ongoing use of
generative AI models require significant energy consumption and water
for cooling, contributing to carbon emissions. Organizations should
consider the environmental impact of their AI usage and strive for
efficient deployment and operation of these tools.

Secure Vibe Coding Best
Practices Checklist

Category

Prompt
Engineering

Best Practice

Explicit Security
Directives

Multi-Stage
Prompting

Negative
Constraints

Description/
Action

Always include
specific security
requirements
(e.g., input
validation, auth,
OWASP) in
prompts.

Prompt AI to
generate code,
then prompt it
again to review
its own output for
security flaws.

Explicitly forbid
insecure practices
(e.g., hardcoding
secrets, eval()) in
prompts.

Key Benefit

Nudges AI to
generate safer
code from the
start.

Catches
vulnerabilities by
forcing AI to self-
assess security.

Establishes
non-negotiable
security
boundaries for AI.

https://eur-lex.europa.eu/eli/reg/2016/679/oj

26

Automated
Tools

SAST/DAST
Integration

Dependency
Scanning

Secrets Detection

Integrate Static
(SAST) and
Dynamic (DAST)
Application
Security Testing
into CI/CD
pipelines.

Use tools to
scan third-
party libraries
for known
vulnerabilities.

Employ tools to
scan codebases
and Git history
for exposed
credentials.

Flags common
vulnerabilities
early; tests
runtime behavior.

Prevents supply
chain attacks
from insecure
dependencies.

Prevents
accidental
leakage of
sensitive
information.

Code Review Critical Human
Review

Refactoring for
Clarity

Assume AI-
generated code is
insecure; conduct
thorough peer
reviews for subtle
vulnerabilities.

Clean up verbose/
inconsistent AI
code; improve
variable names;
align with project
standards.

Identifies
nuanced issues
missed by
automated tools;
ensures business
logic security.

Enhances
correctness,
maintainability,
and security.

Data Handling Input Validation/
Sanitization

Secure Secrets
Management

Database Security

Rigorously
validate and
sanitize all user
inputs to prevent
injection attacks
(SQL, XSS, Path
Traversal).

Use environment
variables or
dedicated secret
management
tools; never
hardcode
credentials.

Protect data
with encryption,
parameterized
queries, and least
privilege access;
hash and salt
sensitive data.

Protects against
common web
application
vulnerabilities.

Prevents
catastrophic
security breaches
if code becomes
public.

Safeguards
sensitive
information in the
database.

27

Compliance &
Ethics

General
Practices

IP Due Diligence

Bias Mitigation

Transparency &
Accountability

Version Control

Continuous
Monitoring

Secure API Design

Understand
and manage
intellectual
property rights
and licensing
for AI-generated
code and its
components.

Actively check
for and address
biases in training
data and AI-
generated code.

Document AI tool
usage; ensure
traceability
of AI outputs;
establish clear
accountability
frameworks.

Use Git religiously
for snapshots
and easy
reverts; commit
frequently.

Implement
proactive
monitoring and
log analysis to
detect runtime
vulnerabilities
and anomalies.

Implement robust
authentication
(MFA, OAuth) and
authorization
(RBAC, least
privilege) for all
APIs.

Mitigates legal
risks related
to ownership
and license
contamination.

Ensures fairness
and prevents
perpetuation of
discrimination.

Promotes
responsible AI
development and
helps address
issues.

Prevents data
loss; enables
fearless
experimentation
and easier
debugging.

Identifies issues
not caught during
static analysis;
provides real-time
alerts.

Controls access to
sensitive data and
functionality.

28

8. Conclusion and Recommendations

8.1 Key
Recommendations for
Organizations:

8.2 Key Recommendations
for Developers:

Vibe coding represents a transformative leap in software creation — blending speed, creativity, and
accessibility. Yet, as discussed throughout this guide, it introduces new risks that demand a proactive security-
first mindset. AI can amplify innovation, but it cannot substitute sound engineering judgment.

Invest in Training and Upskilling: Prioritize continuous training for developers
and security teams. This training should focus on secure prompt engineering,
critical code review of AI-generated output, and a deep understanding of
underlying AI limitations and potential failure modes.

Establish Robust Security Workflows: Integrate automated security testing
tools, including Static Application Security Testing (SAST), Dynamic Application
Security Testing (DAST), and Software Composition Analysis (SCA), into all CI/CD
pipelines. Complement these automated checks with rigorous, human-led code
review processes for all AI-generated code, especially for critical functionalities
and edge cases.

Standardize Secure Prompting: Develop and enforce internal guidelines and
potentially tools for crafting secure prompts. These guidelines should explicitly
include security requirements, constraints, and forbidden behaviors to guide
AI models toward generating safer code from the outset. This makes prompt
engineering a critical security control point, enabling "security by design" at the
earliest stage.

Implement Strong Data and Access Controls: Enforce strict secrets
management practices, ensuring sensitive data is never hardcoded. Design
and implement secure API endpoints with robust authentication (e.g., MFA) and
authorization (e.g., Role-Based Access Control, least privilege) mechanisms.

Address Legal and Ethical Implications: Develop clear internal policies
and frameworks for intellectual property ownership, license compliance, bias
mitigation, and data privacy specifically related to AI-generated code. Foster
transparency about AI tool usage and establish clear accountability for AI-
generated outputs.

Adopt a Hybrid Development Model: Strategically leverage vibe coding
for rapid prototyping, idea validation, and automation of repetitive tasks.
Simultaneously, maintain and invest in traditional coding expertise for
developing complex, mission-critical, and legacy systems, ensuring a seamless
and secure integration between both approaches.

Never Trust, Always Verify: Approach all AI-generated code with a critical
mindset, assuming it may contain vulnerabilities. Thoroughly review and test
every piece of AI-generated output before integration.

Master Prompt Engineering: Develop strong skills in crafting clear, specific,
and security-aware prompts. Understand how to provide sufficient context and
explicit security directives to guide the AI effectively.

Maintain Foundational Knowledge: Continuously deepen your understanding
of core coding principles, secure coding best practices, and system architecture.
This fundamental knowledge is crucial for identifying and rectifying issues that
AI might miss or introduce.

Utilize Security Tools: Integrate and effectively use automated security testing
tools (SAST, DAST, SCA) in your development workflow. Leverage AI-assisted
debugging and code auditing tools where available.

29

Practice Secure Coding Habits: Apply principles like rigorous input validation,
secure secrets management, proper error handling, and robust authentication/
authorization consistently, regardless of whether the code was human- or AI-
generated.

8.3 Strategies for
Addressing the
Accessibility-Security
Paradox

8.3.1 Tiered Development
Framework

8.3.2 Technological
Solutions

Organizations can balance democratized access with security controls through
structured tiers:

Implementation Framework:

Tier 1:
Supervised

User Profile

Permitted
Applications

Security
Controls

Oversight

Non-technical
domain experts

Internal
tools; Process
automation

Pre-approved
prompt
templates;
Automated
scanning;
Mandatory expert
review

Dedicated
security reviewer;
Restricted
deployment

Technical domain
experts; Citizen
developers

Departmental
applications;
Integration
components

Semi-automated
validation;
Security-
enhanced
prompts

Security
champion pairing;
Periodic reviews

Experienced
developers;
Security-trained
engineers

Critical systems;
Customer-facing
applications

Self-certification;
Advanced security
testing

Spot checks; Risk-
based reviews

Tier 2:
Guided

Tier 3:
Expert

Security
Guardrails:

Continuous
Validation
Pipelines:

AI Security Co-
Pilots: Specialized
LLMs trained to
analyze code for
vulnerabilities,
serving as
automated
security reviewers

Prompt-to-
Production
Security Gates:
Automated
checkpoints
validating code at
each stage with
risk-appropriate
security
complexity

Security-
Enhanced
Prompt
Libraries: Pre-
vetted prompt
collections with
built-in security
controls for non-
experts

Security Drift
Detection:
Monitoring
systems
identifying when
AI code deviates
from expected
security patterns

Automated
Security
Verification:
Static and
dynamic analysis
tools calibrated
for AI-generated
code patterns

Compliance
Verification:
Tools mapping AI-
generated code
against regulatory
requirements and
organizational
policies

30

8.3.3 Organizational
Implementation

8.3.4 Progressive Risk
Management

Upskilling
Programs:

Risk-Based
Approach:

Collaborative
Models:

Prompt
Engineering
Security
Certification:
Training
developers on
security-focused
prompt design
and validation

Graduated
Security
Requirements:
Tailoring controls
based on
application risk
level—higher-
risk applications
require more
extensive security
measures
and expert
involvement

This framework enables organizations to harness vibe coding's democratization
benefits while maintaining robust security posture through appropriate controls,
training, and technological safeguards.

Security-
Developer-AI
Triads: Cross-
functional
teams where
security experts,
developers, and
AI specialists
collaborate

Security
Champion
Networks:
Embedding
security-trained
individuals within
development
teams for
guidance and
first-line review

Proportional
Resource
Allocation:
Directing security
resources based
on project risk,
ensuring critical
applications
receive
appropriate
attention without
overburdening
low-risk projects

Expert Advisory
Panels: On-
demand security
expert access
for high-risk
applications
without creating
development
bottlenecks

AI-Security
Fusion Roles:
New positions
blending AI
expertise
with security
knowledge

Continuous
Feedback
Integration:
Capturing security
lessons learned
and feeding
them back into
prompting
practices and
security controls

Communities
of Practice:
Organization-
wide knowledge
sharing focused
on secure vibe
coding

31

Sources [1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Karpathy, Andrej. "vibe coding," X (Twitter), February 6, 2025.

Y Combinator. "Vibe Coding Is The Future," YC Startup Library, March 5,
2025.

GitGuardian. "The Hidden Breach: Secrets Leaked Outside the Codebase
Pose a Serious Threat," GitGuardian Blog, March 31, 2025.

European Parliament and Council. "Regulation (EU) 2024/1689 on Artificial
Intelligence (AI Act)," Official Journal of the European Union, Article 1, July
12, 2024.

National Institute of Standards and Technology. "AI Risk Management
Framework (AI RMF 1.0)," NIST, January 2023.

U.S. Department of Health and Human Services. "Health Insurance
Portability and Accountability Act of 1996 (HIPAA)," Public Law 104-191,
August 21, 1996.

U.S. Food and Drug Administration. "Digital Health Center of Excellence,"
FDA.gov, accessed June 2025.

U.S. Department of the Treasury. "Managing Artificial Intelligence-Specific
Cybersecurity Risks in the Financial Services Sector," March 2024.

National Institute of Standards and Technology. "Framework for
Improving Critical Infrastructure Cybersecurity (Version 1.1)," April 16,
2018.

General Services Administration. "FedRAMP Security Controls Baseline,"
FedRAMP.gov, accessed June 2025.

U.S. Department of Defense. "Cybersecurity Maturity Model Certification
(CMMC) Model Overview," CMMC-COE, Version 2.0, November 2021.

International Organization for Standardization. "ISO/IEC JTC 1/SC 42
Artificial Intelligence," ISO.org, accessed June 2025.

OWASP Foundation. "OWASP AI Security and Privacy Guide," accessed June
2025.

Biryukov, Alex, Daniel Dinu, and Dmitry Khovratovich. "Argon2: New
Generation of Memory-Hard Functions for Password Hashing and Other
Applications," IEEE European Symposium on Security and Privacy, 2016.

OWASP Foundation. "OWASP Dependency-Check," accessed June 2025.

Amazon Web Services. "AWS Secrets Manager Developer Guide," accessed
June 2025.

HashiCorp. "Vault Documentation," accessed June 2025.

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework," RFC 6749,
Internet Engineering Task Force, October 2012.

Elastic N.V. "Elasticsearch Guide: Manage Compute Resources," Elastic
Documentation, accessed June 2025.

Amazon Web Services. "Amazon CloudWatch User Guide," accessed June
2025.

European Parliament and Council. "Regulation (EU) 2016/679 on the
General Data Protection Regulation (GDPR)," Official Journal of the
European Union, April 27, 2016.

 https://x.com/karpathy/status/1886192184808149383

https://www.ycombinator.com/library/ME-vibe-coding-is-the-future
https://www.ycombinator.com/library/ME-vibe-coding-is-the-future
https://blog.gitguardian.com/secrets-leaked-outside-the-codebase/
https://blog.gitguardian.com/secrets-leaked-outside-the-codebase/
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf

https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf

 https://www.hhs.gov/hipaa/index.html
 https://www.hhs.gov/hipaa/index.html
 https://www.hhs.gov/hipaa/index.html
https://www.fda.gov/medical-devices/digital-health-center-excellence

https://www.fda.gov/medical-devices/digital-health-center-excellence

https://home.treasury.gov/system/files/136/Managing-AI-Specific-Cybersecurity-Risks-In-the-Financial-Services-Sector.pdf
https://home.treasury.gov/system/files/136/Managing-AI-Specific-Cybersecurity-Risks-In-the-Financial-Services-Sector.pdf
 https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

 https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

 https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

https://www.fedramp.gov/assets/resources/templates/FedRAMP-SSP-A12-Security-Controls-Baseline-Template.xlsx

https://www.fedramp.gov/assets/resources/templates/FedRAMP-SSP-A12-Security-Controls-Baseline-Template.xlsx

https://dodcio.defense.gov/CMMC/
https://dodcio.defense.gov/CMMC/
https://www.iso.org/committee/6794475.html

https://www.iso.org/committee/6794475.html

https://owasp.org/www-project-ai-security-and-privacy-guide/
https://owasp.org/www-project-ai-security-and-privacy-guide/
https://www.password-hashing.net/argon2-specs.pdf
https://www.password-hashing.net/argon2-specs.pdf
https://www.password-hashing.net/argon2-specs.pdf
https://owasp.org/www-project-dependency-check/
https://docs.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/secretsmanager/
https://developer.hashicorp.com/vault/docs

https://tools.ietf.org/rfc/rfc6749.txt

https://tools.ietf.org/rfc/rfc6749.txt

https://www.elastic.co/guide/en/elasticsearch/reference/current/

https://www.elastic.co/guide/en/elasticsearch/reference/current/

 https://docs.aws.amazon.com/cloudwatch/

 https://docs.aws.amazon.com/cloudwatch/

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

32

[22]

[23]

[24]

Perry, Neil, Megha Srivastava, Deepak Kumar, and Dan Boneh. "Do
Users Write More Insecure Code with AI Assistants?" arXiv preprint,
arXiv:2211.03622, November 7, 2022.

Stack Overflow. "2023 Developer Survey Results," Stack Overflow, 2023.

Kalliamvakou, Eirini. "Research: quantifying GitHub Copilot's impact on
developer productivity and happiness," GitHub Blog, September 7, 2022.

https://arxiv.org/abs/2211.03622
https://arxiv.org/abs/2211.03622
https://arxiv.org/abs/2211.03622
https://survey.stackoverflow.co/2023/

 https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

 https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

